Tensorflow mlp二分类
只是简单demo,
可以看出tensorflow非常简洁,适合快速实验
import tensorflow as tf
import numpy as np
import melt_dataset
import sys
from sklearn.metrics import roc_auc_score
def init_weights(shape):
return tf.Variable(tf.random_normal(shape, stddev=0.01))
def model(X, w_h, w_o):
h = tf.nn.sigmoid(tf.matmul(X, w_h)) # this is a basic mlp, think 2 stacked logistic regressions
return tf.matmul(h, w_o) # note that we dont take the softmax at the end because our cost fn does that for us
batch_size = 50
learning_rate = 0.1
num_iters = 500
hidden_size = 20
argv = sys.argv
trainset = argv[1]
testset = argv[2]
trX, trY = melt_dataset.load_dense_data(trainset)
print "finish loading train set ",trainset
teX, teY = melt_dataset.load_dense_data(testset)
print "finish loading test set ", testset
num_features = trX[0].shape[0]
print 'num_features: ',num_features
print 'trainSet size: ', len(trX)
print 'testSet size: ', len(teX)
print 'batch_size:', batch_size, ' learning_rate:', learning_rate, ' num_iters:', num_iters
X = tf.placeholder("float", [None, num_features]) # create symbolic variables
Y = tf.placeholder("float", [None, 1])
w_h = init_weights([num_features, hidden_size]) # create symbolic variables
w_o = init_weights([hidden_size, 1])
py_x = model(X, w_h, w_o)
cost = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(py_x, Y)) # compute costs
train_op = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost) # construct an optimizer
predict_op = tf.nn.sigmoid(py_x)
sess = tf.Session()
init = tf.initialize_all_variables()
sess.run(init)
for i in range(num_iters):
predicts, cost_ = sess.run([predict_op, cost], feed_dict={X: teX, Y: teY})
print i, 'auc:', roc_auc_score(teY, predicts), 'cost:', cost_
for start, end in zip(range(0, len(trX), batch_size), range(batch_size, len(trX), batch_size)):
sess.run(train_op, feed_dict={X: trX[start:end], Y: trY[start:end]})
predicts, cost_ = sess.run([predict_op, cost], feed_dict={X: teX, Y: teY})
print 'final ', 'auc:', roc_auc_score(teY, predicts),'cost:', cost_
python ./mlp.py corpus/feature.normed.rand.12000.0_2.txt corpus/feature.normed.rand.12000.1_2.txt
233 auc: 0.932099377357 cost: 0.210673
234 auc: 0.93210173764 cost: 0.210674
235 auc: 0.93210173764 cost: 0.210675
236 auc: 0.932089936225 cost: 0.210676
Tensorflow mlp二分类的更多相关文章
- tensorflow实现二分类
读万卷书,不如行万里路.之前看了不少机器学习方面的书籍,但是实战很少.这次因为项目接触到tensorflow,用一个最简单的深层神经网络实现分类和回归任务. 首先说分类任务,分类任务的两个思路: 如果 ...
- Tensorflow CIFAR10 (二分类)
数据的下载: (共有三个版本:python,matlab,binary version 适用于C语言) http://www.cs.toronto.edu/~kriz/cifar-10-python. ...
- tensorflow实现svm iris二分类——本质上在使用梯度下降法求解线性回归(loss是定制的而已)
iris二分类 # Linear Support Vector Machine: Soft Margin # ---------------------------------- # # This f ...
- 【原】Spark之机器学习(Python版)(二)——分类
写这个系列是因为最近公司在搞技术分享,学习Spark,我的任务是讲PySpark的应用,因为我主要用Python,结合Spark,就讲PySpark了.然而我在学习的过程中发现,PySpark很鸡肋( ...
- SVM原理以及Tensorflow 实现SVM分类(附代码)
1.1. SVM介绍 1.2. 工作原理 1.2.1. 几何间隔和函数间隔 1.2.2. 最大化间隔 - 1.2.2.0.0.1. \(L( {x}^*)\)对$ {x}^*$求导为0 - 1.2.2 ...
- Kaggle实战之二分类问题
0. 前言 1. MNIST 数据集 2. 二分类器 3. 效果评测 4. 多分类器与误差分析 5. Kaggle 实战 0. 前言 "尽管新技术新算法层出不穷,但是掌握好基础算法就能解决手 ...
- 深度学习之 TensorFlow(二):TensorFlow 基础知识
1.TensorFlow 系统架构: 分为设备层和网络层.数据操作层.图计算层.API 层.应用层.其中设备层和网络层.数据操作层.图计算层是 TensorFlow 的核心层. 2.TensorFlo ...
- keras实现简单性别识别(二分类问题)
keras实现简单性别识别(二分类问题) 第一步:准备好需要的库 tensorflow 1.4.0 h5py 2.7.0 hdf5 1.8.15.1 Keras 2.0.8 opencv-p ...
- tensorflow 教程 文本分类 IMDB电影评论
昨天配置了tensorflow的gpu版本,今天开始简单的使用一下 主要是看了一下tensorflow的tutorial 里面的 IMDB 电影评论二分类这个教程 教程里面主要包括了一下几个内容:下载 ...
随机推荐
- 编译安装php7
yum install libxml2-devel curl-devel openjpeg openjpeg-devel openjpeg-libs libjpeg libpng freetype l ...
- 安装MySQL的时候遇到的错误
这里我安装的是MySQL5.6 我遇到的错误有 (1)Warning: Bison executable not found in PATH 解决办法: yum install bison 原文摘自: ...
- ajax 多个表单值问题,表单序列化加其它表单值
$.ajax({ type: "post", url: "{:u('cart/totalByCard')}?t="+Math.random(9999), dat ...
- C语言拾遗(一)
越来越体会到C语言的重要性,不管是在计算机底层的理解上,还是在算法数据结构上,所以遂决定重新拾起C语言,不定期更新一些知识点. 推荐博客:http://blog.csdn.net/itcastcpp ...
- Mongo运行错误:Failed to connect 127.0.0.1:27017,reason:errno:10061由于目标计算机积极拒绝,无法连接
Mongo运行错误:如下 原因是mongodb的服务没有开启,开启服务后问题就能解决了,开启服务命令:mongod --dbpath "d:\mongodb\data 只要操作mongodb ...
- oracle 表字段添加 修改 删除语法
修改列名 alter table 表明 rename column rename 老列名 to 新列名添加 字段alter table 表名 add(字段名 类型):删除字段alter table 表 ...
- 修改Firefox的User-Agent,伪装修改秘籍
火狐浏览器修改userAgent的办法一: 在火狐浏览器地址栏输入"about:config",按下回车进入设置菜单. 找到"general.useragent.over ...
- pthread_cond_signal惊群现象
1.如下代码所示: #include <stdio.h> #include <stdlib.h> #include <unistd.h> #include < ...
- <<< struts 的一系列介绍
struts有什么用? 以前使用servlet开发应用系统的人深深感受到在java代码中嵌入大量html代码是一件非常痛苦的事,于是sun推出了JSP,解决了java代码中嵌入html代码的问题.但是 ...
- maven的eclise配置
http://blog.csdn.net/guanning0109/article/details/26069277