URAL-1627-Join 生成树计数
传送门:https://vjudge.net/problem/URAL-1627
题意:
给定一个n*m的图,问图中“.”的点生成的最小生成树有多少个。
思路:
生成树的计数,需要用Kirchhoff矩阵。

实际中只开了一个矩阵,如果有一条边(u,v),那么把a[u][v]=a[v][u] = -1, a[u][u]++, a[v][v]++;
#include <algorithm>
#include <iterator>
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <iomanip>
#include <bitset>
#include <cctype>
#include <cstdio>
#include <string>
#include <vector>
#include <stack>
#include <cmath>
#include <queue>
#include <list>
#include <map>
#include <set>
#include <cassert> using namespace std;
//#pragma GCC optimize(3)
//#pragma comment(linker, "/STACK:102400000,102400000") //c++
// #pragma GCC diagnostic error "-std=c++11"
// #pragma comment(linker, "/stack:200000000")
// #pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
// #pragma GCC optimize("-fdelete-null-pointer-checks,inline-functions-called-once,-funsafe-loop-optimizations,-fexpensive-optimizations,-foptimize-sibling-calls,-ftree-switch-conversion,-finline-small-functions,inline-small-functions,-frerun-cse-after-loop,-fhoist-adjacent-loads,-findirect-inlining,-freorder-functions,no-stack-protector,-fpartial-inlining,-fsched-interblock,-fcse-follow-jumps,-fcse-skip-blocks,-falign-functions,-fstrict-overflow,-fstrict-aliasing,-fschedule-insns2,-ftree-tail-merge,inline-functions,-fschedule-insns,-freorder-blocks,-fwhole-program,-funroll-loops,-fthread-jumps,-fcrossjumping,-fcaller-saves,-fdevirtualize,-falign-labels,-falign-loops,-falign-jumps,unroll-loops,-fsched-spec,-ffast-math,Ofast,inline,-fgcse,-fgcse-lm,-fipa-sra,-ftree-pre,-ftree-vrp,-fpeephole2",3) #define lson (l , mid , rt << 1)
#define rson (mid + 1 , r , rt << 1 | 1)
#define debug(x) cerr << #x << " = " << x << "\n";
#define pb push_back
#define pq priority_queue typedef long long ll;
typedef unsigned long long ull; typedef pair<ll ,ll > pll;
typedef pair<int ,int > pii;
typedef pair<int,pii> p3; //priority_queue<int> q;//这是一个大根堆q
//priority_queue<int,vector<int>,greater<int> >q;//这是一个小根堆q
#define fi first
#define se second
//#define endl '\n' #define OKC ios::sync_with_stdio(false);cin.tie(0)
#define FT(A,B,C) for(int A=B;A <= C;++A) //用来压行
#define REP(i , j , k) for(int i = j ; i < k ; ++i)
#define max3(a,b,c) max(max(a,b), c);
//priority_queue<int ,vector<int>, greater<int> >que; const ll mos = 0x7FFFFFFF; //
const ll nmos = 0x80000000; //-2147483648
const int inf = 0x3f3f3f3f;
const ll inff = 0x3f3f3f3f3f3f3f3f; //
const int mod = 1e9;
const double esp = 1e-;
const double PI=acos(-1.0);
const double PHI=0.61803399; //黄金分割点
const double tPHI=0.38196601; template<typename T>
inline T read(T&x){
x=;int f=;char ch=getchar();
while (ch<''||ch>'') f|=(ch=='-'),ch=getchar();
while (ch>=''&&ch<='') x=x*+ch-'',ch=getchar();
return x=f?-x:x;
} /*-----------------------showtime----------------------*/
const int maxn = ;
char str[];
ll a[maxn][maxn];
int g[maxn][maxn];
int n,m,k;
void cal(){
ll ans = ;int sign = ;
for(int i=; i<=n; i++){ //当前行
for(int j=i+; j<=n; j++){
int x = i, y = j;
while(a[y][i]){ //利用gcd的方法,不停地进行辗转相除,达到消去其他行对应列元素的目的
ll t = a[x][i] / a[y][i];
for(int k=i; k<=n; k++)
a[x][k] = (a[x][k] - a[y][k]*t)%mod;
swap(x,y);
} if(x != i){ //奇数次交换,则D=-D'整行交换
for(int k = ; k<=n; k++){
swap(a[i][k], a[x][k]);
}
sign ^= ;
}
}
if(a[i][i] == ){ //斜对角中有一个0,则结果为0
puts("");
return;
}
else ans = ans * a[i][i] %mod;
}
if(sign) ans *= -;
if(ans < ) ans += mod;
printf("%lld\n", ans);
}
int main(){
while(~scanf("%d%d", &n, &m)){
k = ;
for(int i=; i<=n; i++){
scanf("%s", str);
for(int j=; j<m; j++){
if(str[j] == '.')g[i][j+] = ++k;
}
} for(int i=; i<=n; i++){
for(int j=; j<=m; j++){
int u = g[i][j],v;
if(u > ){
if(i + <= n && g[i+][j]){
v = g[i+][j];
a[u][v] = a[v][u] = -;
a[u][u]++;a[v][v]++;
}
if(j + <=m && g[i][j+]){
v = g[i][j+];
a[u][v] = a[v][u] = -;
a[u][u]++;a[v][v]++;
}
}
}
}
n = k-;
cal();
}
return ;
}
URAL - 1627
URAL-1627-Join 生成树计数的更多相关文章
- URAL - 1627:Join (生成树计数)
Join 题目链接:https://vjudge.net/problem/URAL-1627 Description: Businessman Petya recently bought a new ...
- kuangbin带你飞 生成树专题 : 次小生成树; 最小树形图;生成树计数
第一个部分 前4题 次小生成树 算法:首先如果生成了最小生成树,那么这些树上的所有的边都进行标记.标记为树边. 接下来进行枚举,枚举任意一条不在MST上的边,如果加入这条边,那么肯定会在这棵树上形成一 ...
- 【BZOJ1002】【FJOI2007】轮状病毒(生成树计数)
1002: [FJOI2007]轮状病毒 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 1766 Solved: 946[Submit][Status ...
- SPOJ 104 HIGH - Highways 生成树计数
题目链接:https://vjudge.net/problem/SPOJ-HIGH 解法: 生成树计数 1.构造 基尔霍夫矩阵(又叫拉普拉斯矩阵) n阶矩阵 若u.v之间有边相连 C[u][v]=C[ ...
- Luogu P5296 [北京省选集训2019]生成树计数
Luogu P5296 [北京省选集训2019]生成树计数 题目链接 题目大意:给定每条边的边权.一颗生成树的权值为边权和的\(k\)次方.求出所有生成树的权值和. 我们列出答案的式子: 设\(E\) ...
- Loj 2320.「清华集训 2017」生成树计数
Loj 2320.「清华集训 2017」生成树计数 题目描述 在一个 \(s\) 个点的图中,存在 \(s-n\) 条边,使图中形成了 \(n\) 个连通块,第 \(i\) 个连通块中有 \(a_i\ ...
- 「UVA10766」Organising the Organisation(生成树计数)
BUPT 2017 Summer Training (for 16) #6C 题意 n个点,完全图减去m条边,求生成树个数. 题解 注意可能会给重边. 然后就是生成树计数了. 代码 #include ...
- SPOJ.104.Highways([模板]Matrix Tree定理 生成树计数)
题目链接 \(Description\) 一个国家有1~n座城市,其中一些城市之间可以修建高速公路(无自环和重边). 求有多少种方案,选择修建一些高速公路,组成一个交通网络,使得任意两座城市之间恰好只 ...
- BZOJ1494 [NOI2007]生成树计数
题意 F.A.Qs Home Discuss ProblemSet Status Ranklist Contest 入门OJ ModifyUser autoint Logout 捐赠本站 Probl ...
随机推荐
- webapck小知识点1
全局安装webpack webpack-cli npm install webapck webpack-cli -g 卸载全局安装的webpack webpack-cli npm unistall w ...
- 【Android】Genymotion 模拟器 Unable to create virtual device
安装 Genymotion 模拟器的时候报了这个错误,如下: 后来找到了解决方法,见下图: 在 Setting -> Network, 勾选 Use HTTP Proxy, HTTP Proxy ...
- 从CNI到OVN
kubernetes各版本离线安装包 诸如calico flannel等CNI实现,通过牺牲一些功能让网络复杂度得以大幅度降低是我极其推崇的,在云原生时代应用不再关心基础设施的场景下是一个明智之举,给 ...
- 章节十五、5-记录日志---Log4j
一.为什么要用Log4j记录日志? 日志记录对于任何应用程序都非常重要. 它可以帮助我们快速调试代码,通过收集代码执行的信息让代码容易维护. 二.Log4j 是什么? Apache为Java提供的日志 ...
- 【nodejs原理&源码赏析(9)】用node-ssh实现轻量级自动化部署
目录 一. 需求描述 二. 预备知识 IP+端口访问 域名访问 三. Nodejs应用的手动部署 四. 基于nodejs的自动部署 4.1 package.json中的scripts 4.2 自动化发 ...
- redis分布式锁&队列应用
分布式锁 setnx(set if not exists) 如果设值成功则证明上锁成功,然后再调用del指令释放. // 这里的冒号:就是一个普通的字符,没特别含义,它可以是任意其它字符,不要误解 & ...
- Socket编程:UDP和TCP概论及案例
网络编程的三要素: 1.IP地址 2.端口 3.协议 什么是Socket? Socket就是通信链路的端点称"套接词". 基于TCP协议的Socket网络通信: 用来实现双向安全 ...
- bucket list 函数解析
cls_bucket_list 函数 librados::IoCtx index_ctx; // key - oid (for different shards if there is any) ...
- 微服务SpringCloud之Spring Cloud Config配置中心SVN
在回来的路上看到一个个的都抱着花,吃了一路的狗粮,原本想着去旁边的工业园里跑跑步呢,想想还是算了,人家过七夕,俺们过巴西.上一博客学习了Spring Cloud Config使用git作为配置中心,本 ...
- 线性分类 Linear Classification
软分类:y 的取值只有正负两个离散值,例如 {0, 1} 硬分类:y 是正负两类区间中的连续值,例如 [0, 1] 一.感知机 主要思想:分错的样本数越少越好 用指示函数统计分错的样本数作为损失函数, ...