Python机器学习之数据探索可视化库yellowbrick
# 背景介绍
从学sklearn时,除了算法的坎要过,还得学习matplotlib可视化,对我的实践应用而言,可视化更重要一些,然而matplotlib的易用性和美观性确实不敢恭维。陆续使用过plotly、seaborn,最终定格在了Bokeh,因为它可以与Flask完美的结合,数据看板的开发难度降低了很多。
前阵子看到这个库可以较为便捷的实现数据探索,今天得空打算学习一下。原本访问的是英文文档,结果发现已经有人在做汉化,虽然看起来也像是谷歌翻译的,本着拿来主义,少费点精力的精神,就半抄半学,还是发现了一些与文档不太一致的地方。
```python
# http://www.scikit-yb.org/zh/latest/quickstart.html
# http://www.scikit-yb.org/en/latest/quickstart.html
```
```python
import pandas as pd
data = pd.read_csv('data/bikeshare/bikeshare.csv')
X = data[[
"season", "month", "hour", "holiday", "weekday", "workingday",
"weather", "temp", "feelslike", "humidity", "windspeed"
]]
y = data["riders"]
```
```python
from yellowbrick.features import Rank2D
visualizer = Rank2D(algorithm="pearson")
visualizer.fit_transform(X.values)
visualizer.poof() # 在notebook显示
# visualizer.poof(outpath="pcoords.jpg",clear_figure=True) # 输出为png、jpg格式
```

由上图可以看出特征向量7、8为强相关;0、1相关系数也比较高。
下面再来通过曲线拟合看看两者的相关度。
```python
from yellowbrick.features import JointPlotVisualizer
visualizer = JointPlotVisualizer(feature='temp', target='feelslike')
visualizer.fit(X['temp'], X['feelslike'])
visualizer.poof()
```

JointPlotVisualizer 让我们能快速浏览有强相关性的特征,以及各个特征的范围和分布情况。需要注意的是图中的各个轴都已经标准化到0到1之间的值,这是机器学习中一中非常常用的减少一个特征对另一个影响的技术。
```python
from yellowbrick.regressor import ResidualsPlot
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
# Create training and test sets
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.1
)
visualizer = ResidualsPlot(LinearRegression())
visualizer.fit(X_train, y_train)
visualizer.score(X_test, y_test)
visualizer.poof()
```

残差图还向我们展示了模型的误差是怎么产生的:那根加粗的水平线表示的是 residuals = 0 ,也就是没有误差;线上方或者下方的点则表示误差值的大小。比如大部分残差是负值,并且其值是由 actual - expected 算得,也就是说大部分时间预测值比实际值要大,比如和实际相比我们的模型总是预测有更多的骑手。|
```python
import numpy as np
from sklearn.linear_model import RidgeCV
from yellowbrick.regressor import AlphaSelection
# RidgeCV:多个阿尔法,得出多个对应最佳的w,然后得到最佳的w及对应的阿尔法
alphas = np.logspace(-10, 1, 200)
visualizer = AlphaSelection(RidgeCV(alphas=alphas))
visualizer.fit(X, y)
visualizer.poof()
```

```python
alpha = visualizer.alpha_
visualizer.alpha_
```
3.612342699709438
在探索模型家族的过程中,第一个要考虑的是模型是怎样变得更*复杂*的。当模型的复杂度增加,由于方差增加形成的误差也相应增加,因为模型会变得过拟合并且不能泛化到未知数据上。然而,模型越简单由于偏差造成的误差就会越大;模型欠拟合,因此有更多的未中靶预测。大部分机器学习的目的就是要产生一个*复杂度适中*的模型,在偏差和方差之间找到一个中间点。
对一个线性模型来说,复杂度来自于特征本身以及根据模型赋予它们的值。因此对线性模型期望用*最少的特征*达到最好的阐释结果。*正则化*是实现如上目标的其中一种技术,即引入一个alpha参数来对其相互之间系数的权重进行标准化并且惩罚其复杂度。Alpha和复杂度之间是一个负相关。alpha值越大,复杂度越小,反之亦然。
我们现在可以训练我们最终的模型并且用 PredictionError 对其进行可视化了:
```python
from sklearn.linear_model import Ridge
from yellowbrick.regressor import PredictionError
visualizer = PredictionError(Ridge(alpha=alpha))
visualizer.fit(X_train, y_train)
visualizer.score(X_test, y_test)
visualizer.poof()
```

用预测误差visualizer将实际(测量)值对期望(预测)值进行可视化。黑色的45度虚线表示误差为0的点。和残差图一样,这让我们可以看到误差在何处出现,值为多大。
在这个图上,我们可以看到大部分的点集中在小于200骑手的位置。我们也许想要尝试用正交匹配追踪算法(OMP)或者样条(spline)来训练一个将更多区域性考虑进来的回归模型。我们还可以看到残差图中奇怪的拓扑结构好像已被Ridge回归纠正,而且在我们的模型中大值和小值之间有了更多的平衡。Ridge正则化可能纠正了两个特征之间的协方差问题。当我们用其他模型的形式将我们的数据分析推进的同时,我们可以继续visualizers来快速比较并且可视化我们的结果。
希望这个流程让你对怎样将Visualizers通过Scikit-Learn整合到机器学习中去有一个概念,并且给你启发让你将其运用到你的工作中!如果想要了解更多的有关怎样开始使用Yellowbrick的信息,请查看 模型选择教程 。然后你就在 Visualizers and API 上快速查看更多的特定visualizers了。
```python
```
Python机器学习之数据探索可视化库yellowbrick的更多相关文章
- Python机器学习之数据探索可视化库yellowbrick-tutorial
背景介绍 从学sklearn时,除了算法的坎要过,还得学习matplotlib可视化,对我的实践应用而言,可视化更重要一些,然而matplotlib的易用性和美观性确实不敢恭维.陆续使用过plotly ...
- python数据挖掘之数据探索第一篇
目录 数据质量分析 当我们得到数据后,接下来就是要考虑样本数据集的数据和质量是否满足建模的要求?是否出现不想要的数据?能不能直接看出一些规律或趋势?每个因素之间的关系是什么? 通过检验数据集的 ...
- 一个采用python获取股票数据的开源库,相当全,及一些量化投资策略库
tushare: http://tushare.waditu.com/index.html 为什么是Python? 就跟javascript在web领域无可撼动的地位一样,Python也已经在金融量化 ...
- 数据挖掘(二)用python实现数据探索:汇总统计和可视化
今天我们来讲一讲有关数据探索的问题.其实这个概念还蛮容易理解的,就是我们刚拿到数据之后对数据进行的一个探索的过程,旨在了解数据的属性与分布,发现数据一些明显的规律,这样的话一方面有助于我们进行数据预处 ...
- Python数据可视化库-Matplotlib(一)
今天我们来学习一下python的数据可视化库,Matplotlib,是一个Python的2D绘图库 通过这个库,开发者可以仅需要几行代码,便可以生成绘图,直方图,功率图,条形图,错误图,散点图等等 废 ...
- 常用python机器学习库总结
开始学习Python,之后渐渐成为我学习工作中的第一辅助脚本语言,虽然开发语言是Java,但平时的很多文本数据处理任务都交给了Python.这些年来,接触和使用了很多Python工具包,特别是在文本处 ...
- [Python] 机器学习库资料汇总
声明:以下内容转载自平行宇宙. Python在科学计算领域,有两个重要的扩展模块:Numpy和Scipy.其中Numpy是一个用python实现的科学计算包.包括: 一个强大的N维数组对象Array: ...
- [resource]Python机器学习库
reference: http://qxde01.blog.163.com/blog/static/67335744201368101922991/ Python在科学计算领域,有两个重要的扩展模块: ...
- Pycon 2017: Python可视化库大全
本文首发于微信公众号“Python数据之道” 前言 本文主要摘录自 pycon 2017大会的一个演讲,同时结合自己的一些理解. pycon 2017的相关演讲主题是“The Python Visua ...
随机推荐
- 通过windug判断某个模块导致程序不能退出。
1.windug附加进程. 2.~* kb 3.看堆栈
- C#3.0新增功能10 表达式树 04 执行表达式
连载目录 [已更新最新开发文章,点击查看详细] 表达式树 是表示一些代码的数据结构. 它不是已编译且可执行的代码. 如果想要执行由表达式树表示的 .NET 代码,则必须将其转换为可执行的 IL ...
- 优化 Ubuntu
优化Ubuntu 1. 更换 apt 源 echo 'deb http://mirrors.aliyun.com/ubuntu/ bionic main restricted universe mul ...
- Java性能调优之让程序“飞”起来-Java 代码优化
代码优化的目标是: 1.减小代码的体积 2.提高代码运行的效率 代码优化细节 1.尽量指定类.方法的final修饰符 带有final修饰符的类是不可派生的.在Java核心API中,有许多应用final ...
- webgl图库研究(包括BabylonJS、Threejs、LayaboxJS、SceneJS、ThingJS等框架的特性、适用范围、支持格式、优缺点、相关网址)
3D图库框架范围与示例 摘要: 为实现企业80%以上的生产数据进行智能转化,在烟草.造纸.能源.电力.机床.化肥等行业,赢得领袖企业青睐,助力企业构建AI赋能中心,实现智能化转型升级.“远舢文龙数据处 ...
- springBoot数据校验与统一异常处理
概念 异常,在程序中经常发生,如果发生异常怎样给用户一个良好的反馈体验就是我们需要处理的问题.以前处理异常信息,经常都是给前端一个统一的响应,如数据错误,程序崩溃等等.没办法指出哪里出错了,这是一种对 ...
- 【有容云】PPT | 容器与CICD的遇见
编者注:本文为12月21日晚上8点有容云高级咨询顾问蒋运龙在腾讯课堂中演讲的PPT,本次课堂为有容云主办的线上直播Docker Live时代●Online Meetup-第四期:容器与CICD的遇见, ...
- Echarts图表插件(4.x版本)使用(二、带分类筛选的多个图表/实例化多个ECharts,以关系图/force为例)
导读 如果想在一个页面里实例化带分类筛选的多个Echarts该怎么做呢? 曾探讨了带分类选择的关系图显示为自定义图片的需求实现,传送门ECharts图表插件(4.x版本)使用(一.关系图force节点 ...
- 配置VNC并远程控制服务器(电脑)
先象征性介绍一下: VNC (Virtual Network Console)是虚拟网络控制台的缩写, 它是一款基于 UNIX 和 Linux 操作系统的优秀.免费.开源的远程控制工具软件. 然后开始 ...
- kubernetes CRD开发指南
扩展kubernetes两个最常用最需要掌握的东西:自定义资源CRD 和 adminsion webhook, 本文教你如何十分钟掌握CRD开发. kubernetes允许用户自定义自己的资源对象,就 ...