原题传送门
前置知识:并查集,不会的补了再来。
这道题只是在并查集的基础上多了一个操作而已。
这种操作,叫做反集(就先这么叫着)
题目里有一种关系是互为朋友,这很好理解,把互为朋友的两个点合并就可以了。
互为敌人怎么办?
用反集!
所谓反集,就是分别把x,y和它们对应的虚点连接起来。(虚点:a的虚点是a+n(点数))
因为一个人不可能和自己是敌人(至少这道题里不会),所以x永远不会和x+n连接起来,但如果x和y+n连接起来了,x和y就永远不会在一个并查集里了。
有了这个特性,最后检查的时候遍历一遍1-n,如果它是根节点就ans++,最后输出即可。
代码:

 #include<bits/stdc++.h>
using namespace std;
int n,m,fa[],x,y,sz[];
char o;
void init()
{
for(int i=;i<=;i++)
{
fa[i]=i;
sz[i]=;
}
}
int get(int x)
{
if(fa[x]==x)return x;
int r=get(fa[x]);
fa[x]=r;
return r;
}
void merge(int x,int y)
{
int r1=get(x),r2=get(y);
if(r1==r2)
{
return;
}
fa[r1]=r2;
sz[r2]+=sz[r1];
return;
}
int main()
{
cin>>n>>m;
init();
for(int i=;i<=m;i++)
{
cin>>o>>x>>y;
if(o=='F')merge(x,y);
else
{
merge(y+n,x);
merge(x+n,y);
}
}
int ans=;
for(int i=;i<=n;i++)
{
if(fa[i]==i)ans++;
}
cout<<ans<<endl;
return ;
}

【题解】P1892 [BOI2003]团伙-C++的更多相关文章

  1. Luogu P1892 [BOI2003]团伙

    P1892 [BOI2003]团伙 题目描述 1920年的芝加哥,出现了一群强盗.如果两个强盗遇上了,那么他们要么是朋友,要么是敌人.而且有一点是肯定的,就是: 我朋友的朋友是我的朋友: 我敌人的敌人 ...

  2. 洛谷 P1892 [BOI2003]团伙(并查集)

    嗯... 题目链接:https://www.luogu.org/problemnew/show/P1892 通过读题可以很清楚的发现这是一个并查集的题,并且要有两个集合: 若他们p和q是朋友,则存入第 ...

  3. P1892 [BOI2003]团伙 并查集

    题目描述 1920年的芝加哥,出现了一群强盗.如果两个强盗遇上了,那么他们要么是朋友,要么是敌人.而且有一点是肯定的,就是: 我朋友的朋友是我的朋友: 我敌人的敌人也是我的朋友. 两个强盗是同一团伙的 ...

  4. 洛谷 P1892 [BOI2003]团伙

    题目描述 1920年的芝加哥,出现了一群强盗.如果两个强盗遇上了,那么他们要么是朋友,要么是敌人.而且有一点是肯定的,就是: 我朋友的朋友是我的朋友: 我敌人的敌人也是我的朋友. 两个强盗是同一团伙的 ...

  5. 洛谷 P1892 [BOI2003]团伙(种类并查集)

    传送门 解题思路 用并查集f存朋友关系,一个数组e存的是敌人关系,是一个辅助数组,所以叫做种类并查集. 当p和q是朋友时,直接合并,但是当是敌人时,需要一些操作. 当p还没有敌人时(即p的敌人是自己) ...

  6. Luogu P1892 P1525 团伙 关押罪犯

    (怎么都是抓罪犯 怪不得写法差不多) 团伙 关押罪犯 并查集.以"敌人的敌人是朋友"的思路来处理.所以增加一个e/E数组来存储敌人. 关押罪犯还用到了贪心的思路.将冲突值从大到小排 ...

  7. [洛谷P1892][codevs2597]团伙

    题目大意:有n个强盗,他们有这样的关系:1.朋友的朋友是朋友:2.敌人的敌人是朋友. 两个人是朋友,则他们在一个团伙中,是敌人则在不同团伙中. 现在给出一些朋友或敌人的关系,问最多有多少团伙.输入保证 ...

  8. [BOI2003]团伙

    题目描述 1920年的芝加哥,出现了一群强盗.如果两个强盗遇上了,那么他们要么是朋友,要么是敌人.而且有一点是肯定的,就是: 我朋友的朋友是我的朋友: 我敌人的敌人也是我的朋友. 两个强盗是同一团伙的 ...

  9. 【洛谷P1892】团伙

    题目大意:维护 N 个人和 M 个关系,对每个人来说符合:我朋友的朋友也是我的朋友,我敌人的敌人也是我的朋友,求最多有多少个朋友构成的联通块. 题目大意:维护关系显然要用到并查集,这里是维护了两种关系 ...

随机推荐

  1. Linux杂谈: 树形显示多级目录--tree

    最近写博客的时候偶尔会需要将文件目录结构直观地列出来,例如python的包结构. 于是在网上搜了搜,发现了一个Linux下还不错的工具--tree tree 可以很直观地显示多级目录结构. 1. 安装 ...

  2. Android疑难杂症之Theme

    背景:最近在把自己之前写的一个应用换成Material Design风格,在看官方Guide后动手试了一试,没想到出门就遇到了坑,在换成Material Design风格的主题后,我设置了一下colo ...

  3. .NET DataTable转换为JSON格式的字符串

    在进行数据传递的时候,有时我们需要通过Ajax的方式或者其他的方式传递一个数据列表,可以将DataTable或者其他形式的数据列表转换为JSON的格式,通过Ajax实体的形式进行传递. 比如说: // ...

  4. MinGW gcc 生成动态链接库 dll 的一些问题汇总(由浅入深,很详细)

    网络上关于用 MinGW gcc 生成动态链接库的文章很多.介绍的方法也都略有不同.这次我在一个项目上刚好需要用到,所以就花了点时间将网上介绍的各种方法都实验了一遍.另外,还根据自己的理解试验了些网上 ...

  5. 在mac上尝试docker-swarm

    声明:本博客欢迎转发,但请保留原作者信息!新浪微博:@Lingxian_kong;博客地址:孔令贤的博客;内容系本人学习.研究和总结,如有雷同,实属荣幸! 安装docker-machine 我的安装环 ...

  6. 关于Windows更新窗口内容的问题(作为一个实验,效果很明显)

    Windows中的窗口在特定情况下会由系统进行重绘,如无效区域重新显现时,,会向窗口的处理过程发送VM_PAINT消息,但是,可能还有Windows自己的更新窗口处理,如在下面的代码中,将击键显式地转 ...

  7. delphi dispose释放内存的方法

    delphi dispose释放内存的方法 2010-06-08 19:39:59|  分类: DELPHI |  标签: |举报 |字号大中小 订阅     dispose使用方法的简单介绍在本文末 ...

  8. .net core 2.0 dbfirst 报 dotnet ef 未找到与命令“dotnet-ef”匹配的可执行文件的解决办法

    问题描述: 最近研究了一段时间.netcore dbfirst,新建类库用来生成实体模型,执行命令总是提示 未找到与命令“dotnet-ef”匹配的可执行文件,根据网上的解决办法引用 Microsof ...

  9. "犯罪心理"解读Mybatis拦截器

    原文链接:"犯罪心理"解读Mybatis拦截器 Mybatis拦截器执行过程解析 文章写过之后,我觉得 "Mybatis 拦截器案件"背后一定还隐藏着某种设计动 ...

  10. vue-cli3.x npm create projectName 报错: Unexpected end of JSON input while parsing near......

    npm 版本与node版本还有webpack版本之间的问题 清理缓存,“ npm cache clean --force " 一切OK