-->寻找低效的SQL语句 ,下面的语句主要适用于从视图v$sqlarea中获得当前运行下且耗用buffer_gets较多的SQL语句                   
SELECT executions                                                                     
     , disk_reads                                                                    
     , buffer_gets                                                                  
     , ROUND( ( buffer_gets         
               - disk_reads )       
             / buffer_gets, 2 )      
          hit_ratio                                      
     , ROUND( disk_reads / executions, 2 ) reads_per_run                   
     , sql_text                                       
FROM   v$sqlarea                                                               
WHERE      executions > 0                                                   
       AND buffer_gets > 0                                               
       AND ( buffer_gets                                                    
            - disk_reads )                                                  
           / buffer_gets < 0.80                                                        
ORDER BY 4 DESC;

--查询低效的sql

SELECT EXECUTIONS, DISK_READS, BUFFER_GETS,
ROUND ((BUFFER_GETS-DISK_READS)/BUFFER_GETS, 2) Hit_radio,
ROUND (DISK_READS/EXECUTIONS, 2) Reads_per_run,
   SQL_TEXT
FROM   V$SQLAREA
WHERE  EXECUTIONS>0
AND  BUFFER_GETS > 0
AND (BUFFER_GETS-DISK_READS)/BUFFER_GETS < 0.8
ORDER BY 4 DESC;

1.查看总消耗时间最多的前10条SQL语句
 select *
from (select v.sql_id,
v.child_number,
v.sql_text,
last_load_time,
v.PARSING_USER_ID,
ROUND(v.ELAPSED_TIME / 1000000 / (CASE
               WHEN (EXECUTIONS = 0 OR NVL(EXECUTIONS, 1 ) = 1) THEN
                1
               ELSE
                EXECUTIONS
             END),
             2) "执行时间'S'",
 v.SQL_FULLTEXT,
v.cpu_time,
v.disk_reads,
rank() over(order by v.elapsed_time desc) elapsed_rank
from v$sql v  ) a
where elapsed_rank <= 100  and   last_load_time > to_char(sysdate - 1/1440, 'YYYY-MM-DD/HH:MI:SS')    order by "执行时间'S'" desc

查询最近一分钟内最慢的SQL:

select executions, cpu_time/1e6 as cpu_sec, elapsed_time/1e6 as elapsed_sec, round(elapsed_time/sqrt(executions)) as important, v.*
from v$sql v
where executions > 10 and last_load_time > to_char(sysdate - 1/1440, 'YYYY-MM-DD/HH:MI:SS')  
order by important desc

2.查看CPU消耗时间最多的前10条SQL语句
select *
from (select v.sql_id,
v.child_number,
v.sql_text,
v.elapsed_time,
v.cpu_time,
v.disk_reads,
rank() over(order by v.cpu_time desc) elapsed_rank
from v$sql v) a
where elapsed_rank <= 10;

3.查看消耗磁盘读取最多的前10条SQL语句
select *
from (select v.sql_id,
v.child_number,
v.sql_text,
v.elapsed_time,
v.cpu_time,
v.disk_reads,
rank() over(order by v.disk_reads desc) elapsed_rank
from v$sql v) a
where elapsed_rank <= 10;

一、查询执行最慢的sql
    
select *
 from (select sa.SQL_TEXT,
        sa.SQL_FULLTEXT,
        sa.EXECUTIONS "执行次数",
        round(sa.ELAPSED_TIME / 1000000, 2) "总执行时间",
        round(sa.ELAPSED_TIME / 1000000 / sa.EXECUTIONS, 2) "平均执行时间",
        sa.COMMAND_TYPE,
        sa.PARSING_USER_ID "用户ID",
        u.username "用户名",
        sa.HASH_VALUE
     from v$sqlarea sa
     left join all_users u
      on sa.PARSING_USER_ID = u.user_id
     where sa.EXECUTIONS > 0
     order by (sa.ELAPSED_TIME / sa.EXECUTIONS) desc)
 where rownum <= 50;

二、查询次数最多的 sql
    
select *
 from(selects.SQL_TEXT,
        s.EXECUTIONS"执行次数",
        s.PARSING_USER_ID"用户名",
        rank() over(orderbyEXECUTIONS desc) EXEC_RANK
     fromv$sql s
     leftjoinall_users u
      onu.USER_ID = s.PARSING_USER_ID) t
 whereexec_rank <= 100;

select * from v$sql_monitor where sql_text is not null;

select * from v$sql t
where t.LAST_ACTIVE_TIME>(sysdate - interval '1' MINUTE)  --执行1分钟内的SQL语句
--      and t.PARSING_SCHEMA_NAME = 'LSBIKE' --数据库
--      and (t.MODULE is null or t.MODULE not like '%PL/SQL%') --不是在某些终端里的执行
--      and lower(t.SQL_TEXT) like '%select%' --查询某类SQL语句
order by t.LAST_ACTIVE_TIME desc;

--TOP SQL
select *  
  from (select round(nvl((sqt.elap / 1000000), to_number(null)),2) "Elapsed Time (s)",  
              round( nvl((sqt.cput / 1000000), to_number(null)),2) "CPU Time (s)",  
               sqt.exec,  
               round(decode(sqt.exec,  
                      0,  
                      to_number(null),  
                      (sqt.elap / sqt.exec / 1000000)),2) "Elap per Exec (s)",  
               round((100 *  
               (sqt.elap / (select sum(e.value) - sum(b.value)  
                               from dba_hist_sys_time_model b,  
                                    dba_hist_sys_time_model e  
                              where b.snap_id = &beg_snap and  
                                    e.snap_id = &end_snap and  
                                    b.dbid = &dbid and  
                                    e.dbid = &dbid and  
                                    b.instance_number = &inst_num and  
                                    e.instance_number = &inst_num and  
                                    e.stat_name = 'DB time' and  
                                    b.stat_name = 'DB time'))) ,2)norm_val,  
               sqt.sql_id,  
               decode(sqt.module, null, null, 'Module: ' || sqt.module) SqlModule,  
               nvl(to_nchar(SUBSTR(st.sql_text,1,2000)) , (' ** SQL Text Not Available ** ')) SqlText  
          from (select sql_id,  
                       max(module) module,  
                       sum(elapsed_time_delta) elap,  
                       sum(cpu_time_delta) cput,  
                       sum(executions_delta) exec  
                  from dba_hist_sqlstat  
                 where dbid = &dbid and  
                       instance_number = &inst_num and  
                        snap_id > &beg_snap and  
                       snap_id <= &end_snap  
                 group by sql_id) sqt,  
               dba_hist_sqltext st  
         where st.sql_id(+) = sqt.sql_id and  
               st.dbid(+) = &dbid  
         order by nvl(sqt.elap, -1) desc,  
                  sqt.sql_id)  
 where rownum < 65 and  
       (rownum <= 10 or norm_val > 1);

--

select a.EVENT, a.SQL_ID, a.MACHINE, b.SQL_TEXT, b.SQL_FULLTEXT,b.FIRST_LOAD_TIME,b.LAST_LOAD_TIME,b.LAST_ACTIVE_TIME
  from v$session a, v$sql b
where a.SQL_ID = b.SQL_ID
   and a.USERNAME is not null
   and a.STATUS = 'ACTIVE';

--查看正在执行的sql执行计划

--display_cursor     为第一步查出来的SQL_ID

select * from table(dbms_xplan.display_cursor('7k0dhtw1zudrw'))

--等待事件以及语句情况
select  event,sql_id, mi, count(mi)
  from (select substrb(event,1,30) event, sql_id, to_char(sample_time, 'yyyymmdd hh24mi') mi --,
        --session_id
          from dba_hist_active_sess_history
         where sql_id = '5s1x1tmt570pn'
           and sample_time > to_date('20190513 0940', 'yyyymmdd hh24mi')
           and sample_time < to_date('20190513 1910', 'yyyymmdd hh24mi'))
 group by  event,sql_id, mi
  order by mi ;

enq: SQ - contention
5s1x1tmt570pn    SELECT ( TO_CHAR(SYSDATE, 'YYYYMMDDHH24miss') || 410299 ||  LPAD(SEQ_BKE010.NEXTVAL, 10, '0')  ) FROM DUAL
7pycct8f0sur2    SELECT ( TO_CHAR(SYSDATE, 'YYYYMMDDHH24miss') || 410299 ||  LPAD(SEQ_AAZ217.NEXTVAL, 10, '0')  ) FROM DUAL
2bxcdvtcvykcv    SELECT ( TO_CHAR(SYSDATE, 'YYYYMMDDHH24miss') || 410200 || LPAD(SEQ_BKZ522.NEXTVAL, 10, '0') ) FROM DUAL

--看等待事件的
SELECT t2.sid,
  t2.SERIAL#,
  t1.SPID OS_PID,
  t3.SQL_ID,
  t2.EVENT,
  t2.P1TEXT,
  t2.P1,
  t2.p2TEXT,
  t2.P2,
  t2.p3TEXT,
  t2.P3,
  t3.SQL_FULLTEXT
FROM v$process t1,
  v$session t2,
  v$sql t3
WHERE t1.ADDR = t2.PADDR
AND t2.STATUS = 'ACTIVE' -- 'INACTIVE'
and t2.SQL_ID = t3.SQL_ID
and t2.event not like 'SQL%';

select t2.sid, t2.SERIAL#, -- 库级唯一定位一个session t1.SPID OS_PID, -- 操作系统的PID t3.SQL_ID, t2.EVENT,-- SQLID和等待事件 t2.P1TEXT, t2.P1, -- 等待事件的P1信息 t2.p2TEXT, t2.P2, -- 等待事件的P2信息 t2.p3TEXT, t2.P3, -- 等待事件的P3信息 t3.SQL_FULLTEXT -- 被执行的SQL完整内容 from v$process t1, v$session t2, v$sql t3 where t1.ADDR = t2.PADDR and t2.STATUS = 'ACTIVE' -- 表示当前正在执行SQL的会话
-- and t2.STATUS = 'INACTIVE'
-- 表示当前等待执行SQL的会话
-- and t2.STATUS = 'KILLED'
-- 表示当前会话正在被杀掉,未提交事务强制回滚
and t2.SQL_ID = t3.SQL_ID; -- t2.sid, t2.SERIAL#      可以用作库级杀死会话:alter system kill session 't2.sid, t2.SERIAL#';
-- t1.SPID OS_PID          可以用作系统级杀死会话:kill -9 t1.SPID
-- t2.EVENT 和 P1、P2、P3  不同的等待事件的P1、P2和P3的信息是不尽相同的,具体要查官档
-- t3.SQL_FULLTEXT         是一个CLOB类型的字段

--1.从V$SQLAREA视图中选出最糟糕的查询
select b.username username,a.disk_reads reads,
       a.executions exec,a.disk_reads / decode (a.executions, 0, 1,a.executions) rds_exec_ratio,
       a.sql_text STATEMENT
from   v$sqlarea a, dba_users b
where  a.parsing_user_id = b.user_id
and    a.disk_reads > 10000
order by a.disk_reads desc;

--2.从V$SQL视图中选出最糟糕的查询
select *
from  (select address,  --address替换sql_text
       rank() over (order by buffer_gets desc ) as rank_bufgets,
       to_char(100 * ratio_to_report(buffer_gets) over (), '999.99') pct_buf
       from v$sql )
where rank_bufgets < 11;

declare
  tune_task varchar2(30);
  tune_sql clob;
begin
  tune_task := dbms_sqltune.create_tuning_task(
    sql_id    => '6v864r3vc9qbc',
    task_name   => 'tune_test2',
    description => 'Provide SQL ID'
  );
end;
/

--执行DBMS_SQLTUNE并查看建议
exec dbms_sqltune.execute_tuning_task(task_name => 'tune_test2');

set long 10000 longchunksize 10000 linesize 150 pagesize 200
select dbms_sqltune.report_tuning_task('tune_test2') from dual;

--查看和删除调优任务
select owner,task_name,advisor_name,created from dba_advisor_tasks order by created;

exec dbms_sqltune.drop_tuning_task(task_name => '&&task_name');

优化SQL集一的更多相关文章

  1. sql语句优化SQL Server

    MS   SQL   Server查询优化方法查询速度慢的原因很多,常见如下几种 1.没有索引或者没有用到索引(这是查询慢最常见的问题,是程序设计的缺陷)          2.I/O吞吐量小,形成了 ...

  2. 转载 50种方法优化SQL Server数据库查询

    原文地址 http://www.cnblogs.com/zhycyq/articles/2636748.html 50种方法优化SQL Server数据库查询 查询速度慢的原因很多,常见如下几种: 1 ...

  3. 拆分字段优化SQL

    拆分字段优化SQL 今天看到一条用函数处理连接的SQL,是群里某位网友的,SQL语句如下: SELECT SO_Order.fdate , SO_Order.fsn FROM so_order INN ...

  4. MySQL查询不使用索引汇总 + 如何优化sql语句

    不使用索引原文 : http://itlab.idcquan.com/linux/MYSQL/918330.html MySQL查询不使用索引汇总 众所周知,增加索引是提高查询速度的有效途径,但是很多 ...

  5. MySQL 5.7 优化SQL提升100倍执行效率的深度思考(GO)

    系统环境:微软云Linux DS12系列.Centos6.5 .MySQL 5.7.10.生产环境,step1,step2是案例,精彩的剖析部分在step3,step4. 1.慢sql语句大概需要13 ...

  6. 浅谈MySQL中优化sql语句查询常用的30种方法 - 转载

    浅谈MySQL中优化sql语句查询常用的30种方法 1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引. 2.应尽量避免在 where 子句中使 ...

  7. 应用索引技术优化SQL 语句(转)

    原文出处 一.前言 很多数据库系统性能不理想是因为系统没有经过整体优化,存在大量性能低下的SQL 语句.这类SQL语句性能不好的首要原因是缺乏高效的索引.没有索引除了导致语句本身运行速度慢外,更是导致 ...

  8. mysql优化sql语句

    mysql优化sql语句   常见误区   www.2cto.com   误区1:   count(1)和count(primary_key) 优于 count(*)   很多人为了统计记录条数,就使 ...

  9. SQL精华总结索引类型优化SQL优化事务大表优化思维导图❤️

    索引类型 从数据结构角度: B+树索引, hash索引,基于哈希表实现,只有全值匹配才有效.以链表的形式解决冲突.查找速度非常快 O(1) 全文索引,查找的是文本中的关键词,而不是直接比较索引中的值, ...

随机推荐

  1. CodeForces - 5C(思维+括号匹配)

    题意 https://vjudge.net/problem/CodeForces-5C 给出一个括号序列,求出最长合法子串和它的数量. 合法的定义:这个序列中左右括号匹配. 思路 这个题和普通的括号匹 ...

  2. Java对象导论

    Java对象导论 1.1 抽象过程 万物皆对象. 程序是对象的集合(即:类),他们通过发送消息(调用方法)来告知彼此要做的. 每个对象都有自己的由其他对象所构成的存储(引用其他对象或基本类型,即组合) ...

  3. 是时候扔掉 Postman 了,试试 IntelliJ IDEA 自带的高能神器!

    前言 接口调试是每个软件开发从业者必不可少的一项技能,一个项目的的完成,可能接口测试调试的时间比真正开发写代码的时间还要多,几乎是每个开发的日常工作项.所谓工欲善其事必先利其器,在没有尝到 IDEA ...

  4. C# 中的基本数值类型

    在之前的文章中(地址:https://www.vinanysoft.com/c-sharp-basics/introducing/),以 HelloWorld 程序为基础,介绍 C# 语言.它的结构. ...

  5. How to: Implement File Data Properties 如何:实现文件数据属性

    This topic demonstrates how to implement a business class with a file data property and a file colle ...

  6. kotlin之变量与常量

    版权声明:本文为xing_star原创文章,转载请注明出处! 本文同步自http://javaexception.com/archives/217 kotlin之变量与常量 最近开始做新产品,于是乎用 ...

  7. ORACLE 12.2RAC之问题 ora.chad OFFLINE

    问题描述: 早上巡检是发现一套RAC的ora.chad一个节点的状态是offline,其他的均正常. crsctl stat res -t ora.chad               ONLINE  ...

  8. Codeforces 7E - Defining Macros 题解

    目录 Codeforces 7E - Defining Macros 题解 前言 做法 程序 结尾 Codeforces 7E - Defining Macros 题解 前言 开始使用博客园了,很想写 ...

  9. 给定数轴上的n个点,求距离最近的两个点的距离

    public class MinimumSpacing { //给定平面上的n个点,求距离最近的两个点的距离. //无从下手的话,先分解问题,分解成简单的,逐个分析,然后再合在一起考虑 //这是个2维 ...

  10. 《Web Development with Go》Middleware之共享数据

    这个库值得学, 好像写起来越来越溜 package main import ( "fmt" "log" "net/http" //" ...