Rikka with Prefix Sum

题目描述

Prefix Sum is a useful trick in data structure problems.
For example, given an array A of length n and m queries. Each query gives an interval [l,r] and you need to calculate . How to solve this problem in O(n+m)? We can calculate the prefix sum array B in which Bi is equal to . And for each query, the answer is Br-Bl-1.
Since Rikka is interested in this powerful trick, she sets a simple task about Prefix Sum for you:
Given two integers n,m, Rikka constructs an array A of length n which is initialized by Ai = 0. And then she makes m operations on it.
There are three types of operations:
1. 1 L R w, for each index i ∈ [L,R], change Ai to A+ w.
2. 2, change A to its prefix sum array. i.e., let A' be a back-up of A, for each i ∈ [1,n], change Ai to .
3. 3 L R, query for the interval sum .
Intput:

The first line contains a single number t(1≤ t ≤ 3), the number of the testcases.
For each testcase, the first line contains two integers n,m(1 ≤ n,m ≤ 10^5)
And then m lines follow, each line describes an operation(1 ≤ L ≤ R≤ n, 0 ≤ w ≤ 10^9).
The input guarantees that for each testcase, there are at most 500 operations of type 3.

output:

For each query, output a single line with a single integer, the answer modulo 998244353.

test:

Intput:

1
100000 7
1 1 3 1
2
3 2333 6666
2
3 2333 6666
2
3 2333 6666

output

13002
58489497
12043005

中文题意:给定一个序列A,长度最长为100000,初始值为0,现在有三种操作:

1.对区间[l,r]中所有的数都加上一个值。

2.对整个序列求一次前缀和。

3.询问[l,r]区间内所有a的和。

现在对1,0,0,0求3次前缀和得到下图

可以发现(1,1)对右下角的点的贡献是

接下来我们定义一个变量now记录数组了进行了几次求数组前缀和也就是题目的2号操作。

对于操作1,在[l,r]区间内每个数增加w。

相当于在上次进行2号操作前,在点 L 增加w,在点 R+1 减少w。

例如:在3到5号位置增加1

序号    1 2 3 4 5 6 7 8 9

now     0 0 1 1 1 0 0 0 0     求前缀和后

now-1  0 0 1 0 0 -1 0 0 0   求前缀和前

对于询问的话只要求下次求完前缀和 (位置 R 的值) - (位置 L-1 的值)

对于进行前缀和操作只要将now++即可

具体操作看代码

 #include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
const int maxn = ,mod=;
struct Stack
{
ll lie,time,value;
} st[maxn];
ll fac[maxn+],ifac[maxn+],top; ll quick_pow(ll a,ll b)
{
ll ans=;
while(b)
{
if(b&)
ans=1ll*ans*a%mod;
a=1ll*a*a%mod;
b>>=;
}
return ans;
} void init()
{
fac[]=;
for(int i=; i<=maxn; i++)
fac[i]=1ll*fac[i-]*i%mod;
ifac[maxn]=quick_pow(fac[maxn],mod-);
for(int i=maxn-; i>=; i--)
ifac[i]=1ll*ifac[i+]*(i+)%mod;
} ll C(ll n,ll m)
{
return 1ll*fac[n]*ifac[m]%mod*ifac[n-m]%mod;
} inline ll solve(ll x,ll now)
{
if(x==)return ; ll sum = ;
for(int i=; i<top; i++) ///计算每个更新对点的贡献值
{ if(st[i].lie>x)continue;
ll lie = st[i].lie;
ll per = st[i].time;
ll value = st[i].value; ll aa = x-lie + now-per -;
ll bb = now-per -; sum = (sum + value*C(aa,bb)%mod)%mod;
}
return sum;
} int main()
{
init(); ///预处理阶乘和逆元将计算组合数的时间复杂度降为O(1)
ll t,n,m,op;
scanf("%lld",&t);
while(t--)
{
scanf("%lld%lld",&n,&m);
ll now = ,l,r,value;
top = ;
while(m--)
{
scanf("%lld",&op);
if(op==)
{
scanf("%lld%lld%lld",&l,&r,&value);
st[top].value = value%mod,st[top].time=now-,st[top].lie=l;
top++;
st[top].value =(mod-value)%mod,st[top].time=now-,st[top].lie=r+;
top++;
///将更新存入数组
}
else if(op==)
{
now++;
}
else
{
scanf("%lld%lld",&l,&r);
ll ans = solve(r,now+)-solve(l-,now+);
ans = (ans+mod)%mod;
printf("%lld\n",ans);
}
}
}
return ;
}

Rikka with Prefix Sum(组合数学)的更多相关文章

  1. 2018牛客网暑假ACM多校训练赛(第十场)D Rikka with Prefix Sum 组合数学

    原文链接https://www.cnblogs.com/zhouzhendong/p/NowCoder-2018-Summer-Round10-D.html 题目传送门 - https://www.n ...

  2. 牛客网暑期ACM多校训练营(第十场)D Rikka with Prefix Sum (数学)

    Rikka with Prefix Sum 题意: 给出一个数组a,一开始全为0,现在有三种操作: 1.  1 L R W,让区间[L,R]里面的数全都加上W: 2.  2     将a数组变为其前缀 ...

  3. Rikka with Prefix Sum

    Rikka with Prefix Sum 题目 https://www.nowcoder.com/acm/contest/148/D 题目有三个操作 l到r都添加一个数 取一次前缀和 查询区间和 这 ...

  4. 牛客网暑期ACM多校训练营(第十场)D Rikka with Prefix Sum (组合数学)

    https://www.nowcoder.com/acm/contest/148/D 题意 一个A数组,初始全为0.现有三种操作,1:给区间[L,R]+w:2:把每个位置的元素变为其前缀和:3:求区间 ...

  5. 牛客多校10 D Rikka with Prefix Sum 不是数据结构

    https://www.nowcoder.com/acm/contest/148/D 题意: 1e5个数,1e5个操作,操作分为: 1.区间加. 2.整个数列替换为前缀和. 3.区间查询. 查询数小于 ...

  6. 牛客第十场Rikka with Prefix Sum

    由于其中的2操作非常多,我们就需要将其快速的更改,就会用到组合数的东西 其实自己手写一下就可以发现对于一个点增加的值在经过不断地前缀和累加过程中对于一点的贡献满足杨辉三角 所以我们就需要记录一下其中的 ...

  7. 牛客多校第十场-D- Rikka with Prefix Sum

    链接:https://www.nowcoder.com/acm/contest/148/D来源:牛客网 Prefix Sum is a useful trick in data structure p ...

  8. 4.4 CUDA prefix sum一步一步优化

    1. Prefix Sum 前缀求和由一个二元操作符和一个输入向量组成,虽然名字叫求和,但操作符不一定是加法.先解释一下,以加法为例: 第一行是输入,第二行是对应的输出.可以看到,Output[1] ...

  9. CodeForces - 1204E Natasha, Sasha and the Prefix Sums (组合数学,卡特兰数扩展)

    题意:求n个1,m个-1组成的所有序列中,最大前缀之和. 首先引出这样一个问题:使用n个左括号和m个右括号,组成的合法的括号匹配(每个右括号都有对应的左括号和它匹配)的数目是多少? 1.当n=m时,显 ...

随机推荐

  1. 小白学python-day08-文件及其操作、字符串字典类型转换

    今天是day08,以下是学习总结: 但行努力,莫问前程. ----------------------------------------------------------------------- ...

  2. Struts2 中Struts.xml结果页面配置

    结果页面的配置: 红色的比较常用 

  3. Kubernetes容器集群管理环境 - Prometheus监控篇

    一.Prometheus介绍之前已经详细介绍了Kubernetes集群部署篇,今天这里重点说下Kubernetes监控方案-Prometheus+Grafana.Prometheus(普罗米修斯)是一 ...

  4. 安装MySQL5.7 安装环境:CentOS7 64位 MINI版,

    安装环境:CentOS7 64位 MINI版,安装MySQL5.7 1.配置YUM源 在MySQL官网中下载YUM源rpm安装包:http://dev.mysql.com/downloads/repo ...

  5. 章节十五、6-log4 2-用默认的配置

    一.实例演示 package log4jtutorial; import org.apache.logging.log4j.LogManager; import org.apache.logging. ...

  6. Git命令备忘录

    目录 前言 基本内容 开始之前 基础内容 远程仓库 分支管理 前言 Git在平时的开发中经常使用,整理Git使用全面的梳理. 基本内容 开始之前 请自行准备好Git工具以及配置好Git的基本配置 基础 ...

  7. 【kafka】一、消息队列

    在高并发的应用场景中,由于来不及同步处理请求,接收到的请求往往会发生阻塞.例如,大量的插入.更新请求同时到达数据库,这会导致行或表被锁住,最后会因为请求堆积过多而触发“连接数过多的异常” 的错误.因此 ...

  8. [TCP/IP]DNS解析

    DNS解析主机的IP地址 host -t A www.baidu.com

  9. PDF.js 详情解说

    pdf.js资源下载 点我下载 自定义默认加载的pdf资源 在web/view.js中我们可以通过DEFAULT_URL设置默认加载的pdf.通过上面代码我们也可以看出来可以通过后缀名来指定加载的pd ...

  10. Logback配置文件这么写,TPS提高10倍

    通过阅读本篇文章将了解到 1.日志输出到文件并根据LEVEL级别将日志分类保存到不同文件 2.通过异步输出日志减少磁盘IO提高性能 3.异步输出日志的原理 配置文件logback-spring.xml ...