树的定义是递归的,用树来定义树。因此,树(以及二叉 树)的许多算法都使用了递归

结点(Node):表示树中的数据元素。

结点的度(Degree of Node):结点所拥有的子树的个数。

树的度(Degree of Tree):树中各结点度的最大值。

叶子结点(Leaf  Node):度为 0 的结点,也叫终端结点。

结点的层次(Level of Node):从根结点到树中某结点所经路径上的分支 数称为该结点的层次。根结点的层次规定为 1,其余结点的层次等于其双亲结点 的层次加 1。

二叉树的形态共有 5 种:空二叉树、只有根结点的二叉树、右子树为空的二 叉树、左子树为空的二叉树和左、右子树非空的二叉树。

满二叉树(Full Binary Tree):如果一棵二叉树只有度为 0 的结点和度为 2 的结点,并且度为 0 的结点在同一层上。

完全二叉树(Complete Binary Tree):深度为 k,有 n 个结点的二叉树当且仅当其每一个结点都与深度为 k,有 n 个结点的满二叉树中编号从1到n 的结点一一对应时

二叉树的二叉链表存储结构:一个数据域和两个引用域。

不带头结点的 二叉树的二叉链表的类 BiTree<T>类的实现:

    public class BiTree<T>
{
private Node<T> head; //头引用 //头引用属性
public Node<T> Head
{
get{return head;}
set{head=value;}
}
//构造器
public BiTree()
{
head = null;
}
//构造器
public BiTree(T val)
{
Node<T> p = new Node<T>(val);
head = p;
}
//构造器
public BiTree(T val, Node<T> lp, Node<T> rp)
{
Node<T> p = new Node<T>(val,lp,rp);
head = p;
}
//判断是否是空二叉树
public bool IsEmpty()
{
if (head == null)
{
return true;
}
else
{
return false;
}
}
//获取根结点
public Node<T> Root()
{
return head;
}
//获取结点的左孩子结点
public Node<T> GetLChild(Node<T> p)
{
return p.LChild;
}
//获取结点的右孩子结点
public Node<T> GetRChild(Node<T> p)
{
return p.RChild;
}
//将结点p的左子树插入值为val的新结点,原来的左子树成为新结点的左子树
public void InsertL(T val, Node<T> p)
{
Node<T> tmp = new Node<T>(val);
tmp.LChild = p.LChild;
p.LChild = tmp;
}
//将结点p的右子树插入值为val的新结点,原来的右子树成为新结点的右子树
public void InsertR(T val, Node<T> p)
{
Node<T> tmp = new Node<T>(val);
tmp.RChild = p.RChild;
p.RChild = tmp;
}
//若p非空,删除p的左子树
public Node<T> DeleteL(Node<T> p)
{
if ((p == null) || (p.LChild == null))
{
return null;
}
Node<T> tmp = p.LChild;
p.LChild = null;
return tmp;
}
//若p非空,删除p的右子树
public Node<T> DeleteR(Node<T> p)
{
if ((p == null) || (p.RChild == null))
{
return null;
}
Node<T> tmp = p.RChild;
p.RChild = null;
return tmp;
}
//判断是否是叶子结点
public bool IsLeaf(Node<T> p)
{
if ((p != null) && (p.LChild == null) && (p.RChild == null))
{
return true;
}
else
{
return false;
}
}

BiTree

二叉树的遍历:DLR(先序遍历)、LDR(中序遍历)和 LRD(后序遍历),层序遍历(Level Order)。

哈夫曼树(Huffman  Tree),又叫最优二叉树,指的是对于一组具有确定权值 的叶子结点的具有最小带权路径长度的二叉树。

C#数据结构_树的更多相关文章

  1. 学习javascript数据结构(四)——树

    前言 总括: 本文讲解了数据结构中的[树]的概念,尽可能通俗易懂的解释树这种数据结构的概念,使用javascript实现了树,如有纰漏,欢迎批评指正. 原文博客地址:学习javascript数据结构( ...

  2. BZOJ_3196_Tyvj 1730 二逼平衡树_树状数组套主席树

    BZOJ_3196_Tyvj 1730 二逼平衡树_树状数组套主席树 Description 您需要写一种数据结构(可参考题目标题),来维护一个有序数列,其中需要提供以下操作: 1.查询k在区间内的排 ...

  3. BZOJ_3132_上帝造题的七分钟_树状数组

    BZOJ_3132_上帝造题的七分钟_树状数组 Description “第一分钟,X说,要有矩阵,于是便有了一个里面写满了0的n×m矩阵. 第二分钟,L说,要能修改,于是便有了将左上角为(a,b), ...

  4. python数据结构之树和二叉树(先序遍历、中序遍历和后序遍历)

    python数据结构之树和二叉树(先序遍历.中序遍历和后序遍历) 树 树是\(n\)(\(n\ge 0\))个结点的有限集.在任意一棵非空树中,有且只有一个根结点. 二叉树是有限个元素的集合,该集合或 ...

  5. BZOJ_5055_膜法师_树状数组+离散化

    BZOJ_5055_膜法师_树状数组+离散化 Description 在经历过1e9次大型战争后的宇宙中现在还剩下n个完美维度, 现在来自多元宇宙的膜法师,想偷取其中的三个维度为伟大的长者续秒, 显然 ...

  6. BZOJ_3083_遥远的国度_树链剖分+线段树

    BZOJ_3083_遥远的国度_树链剖分 Description 描述 zcwwzdjn在追杀十分sb的zhx,而zhx逃入了一个遥远的国度.当zcwwzdjn准备进入遥远的国度继续追杀时,守护神Ra ...

  7. BZOJ_3653_谈笑风生_树状数组

    BZOJ_3653_谈笑风生_树状数组 Description 设T 为一棵有根树,我们做如下的定义: ? 设a和b为T 中的两个不同节点.如果a是b的祖先,那么称“a比b不知道 高明到哪里去了”. ...

  8. B20J_2836_魔法树_树链剖分+线段树

    B20J_2836_魔法树_树链剖分+线段树 题意: 果树共有N个节点,其中节点0是根节点,每个节点u的父亲记为fa[u].初始时,这个果树的每个节点上都没有果子(即0个果子). Add u v d ...

  9. B20J_2243_[SDOI2011]染色_树链剖分+线段树

    B20J_2243_[SDOI2011]染色_树链剖分+线段树 一下午净调这题了,争取晚上多做几道. 题意: 给定一棵有n个节点的无根树和m个操作,操作有2类: 1.将节点a到节点b路径上所有点都染成 ...

随机推荐

  1. 【git】15分钟学会使用Git和远程代码库

    Git是个了不起但却复杂的源代码管理系统.它能支持复杂的任务,却因此经常被认为太过复杂而不适用于简单的日常工作.让我们诚实一记吧:Git是复杂的,我们不要装作它不是.但我仍然会试图教会你用(我的)基本 ...

  2. LeetCode 138:复制带随机指针的链表 Copy List with Random Pointer

    给定一个链表,每个节点包含一个额外增加的随机指针,该指针可以指向链表中的任何节点或空节点. 要求返回这个链表的深拷贝. A linked list is given such that each no ...

  3. Vue 报错 listen EADDRINUSE :::8080

    今天在重启vue项目的时候,发现报了错, listen EADDRINUSE :::8080错误提示 原因:因为另一个项目占用了8080端口,我直接在命令行npm run dev第二个项目,就给出了这 ...

  4. Shell基本语法---shell介绍

    简介 1. shell是在linux系统上高效运行的脚本语言 2. 主要用来开发一些实用的.自动化的小工具,而不是用来开发具有复杂业务逻辑的中大型软件 3. shell的基本命令也是linux操作系统 ...

  5. Flink 从0到1学习—— 分享四本 Flink 国外的书和二十多篇 Paper 论文

    前言 之前也分享了不少自己的文章,但是对于 Flink 来说,还是有不少新入门的朋友,这里给大家分享点 Flink 相关的资料(国外数据 pdf 和流处理相关的 Paper),期望可以帮你更好的理解 ...

  6. 完全零基础在Linux中安装 JDK

    完全零基础在Linux中安装 JDK 总体思路:先确定没有Java程序了 — 然后创建相应路径文件夹 — 下载JDK — 解压到当前路径 — 自定义文件名称 — 配置环境变量 — 检查是否安装成功 第 ...

  7. Kafka集群模式安装(二)

    我们来安装Kafka的集群模式,三台机器: 192.168.131.128 192.168.131.130 192.168.131.131 Kafka集群需要依赖zookeeper,所以需要先安装好z ...

  8. CentOS yum 源修改

    修改 CentOS 默认 yum 源为 mirrors.163.com 首先备份系统自带yum源配置文件/etc/yum.repos.d/CentOS-Base.repo [root@localhos ...

  9. WebSphere MQ性能调优浅谈

    导读:目前随着我们在中国的WebSphere MQ(MQSeries)用户数量越来越多,越来越多的用户开始对MQ使用时的性能优化问题提出要求,我根据日常积累的经验谈一谈在MQ性能优化方面应该考虑的因素 ...

  10. wwww

    public class MainActivity extends AppCompatActivity implements XListView.IXListViewListener{ ; priva ...