tensorflow-- Dataset创建数据集对象
tf.data模块包含:
- experimental 模块
- Dataset 类
- FixedLengthRecordDataset 类
- TFRecordDataset 类
- TextLineDataset 类
# author by FH.
# OverView:
# tf.data
# experimental ---Modules
# Dataset ---class
# FixedLengthRecordDataset ---class
# TFRecordDataset ---class
# TextLineDataset ---class
import tensorflow as tf
import numpy as np # 1. 使用静态方法 tf.data.Dataset.from_tensor_slices
# 将输入的第一个维度切割,形成dataset
# 2. 使用 Dataset的 make_one_shot_iterator() 实例化一个 iterator
# 这个iterator 只能从头到尾读取一次。“one shot iterator”
def test1():
sess = tf.Session()
dataset1 = tf.data.Dataset.from_tensor_slices(np.array([1.0,2.0,3.0,4.0,5.0]))
dataset2 = tf.data.Dataset.from_tensor_slices(np.array([[1,2],[3,4],[0,9]]))
dataset3 = tf.data.Dataset.from_tensor_slices(
{
"a":np.array([1.0,2,3,4,5.0]),
"b":np.random.uniform(size=(5,2))
}
)
# 使用 Dataset的 make_one_shot_iterator() 实例化一个 iterator
# 这个iterator 只能从头到尾读取一次。“one shot iterator”
oneShotIterator1 = dataset1.make_one_shot_iterator()
oneShotIterator2 = dataset2.make_one_shot_iterator()
oneShotIterator3 = dataset3.make_one_shot_iterator()
element1 = oneShotIterator1.get_next()
element2 = oneShotIterator2.get_next()
element3 = oneShotIterator3.get_next()
for i in range(5):
print(sess.run(element1))
for i in range(3):
print(sess.run(element2))
for i in range(5):
print(sess.run(element3))
sess.close() # 1.Dataset 中的数据元素转换。
# map() :参数为一个函数,将dataset中的每个元素带入获取新的值
# batch(): 参数为一个整数,将多个元素组合成一个batch
def test2():
sess = tf.Session()
dataset = tf.data.Dataset.from_tensor_slices(np.array([1.0, 2.0, 3.0, 4.0, 5.0,6]))
# map() 重新映射新的元素值
dataset1 = dataset.map(lambda x: x * 3)
# batch() 2个组成一个batch, 组成batch 之后size 为3
dataset2 = dataset.batch(2)
# shuffle() 打乱dataset
dataset3 = dataset.shuffle(buffer_size=3)
# repeat() 将整个序列重复多次,重复4次 size 为24
dataset4 = dataset.repeat(4) oneShotIterator1 = dataset1.make_one_shot_iterator()
oneShotIterator2 = dataset2.make_one_shot_iterator()
oneShotIterator3 = dataset3.make_one_shot_iterator()
oneShotIterator4 = dataset4.make_one_shot_iterator()
element1 = oneShotIterator1.get_next()
element2 = oneShotIterator2.get_next()
element3 = oneShotIterator3.get_next()
element4 = oneShotIterator4.get_next()
for i in range(6): # map()
print(sess.run(element1))
for i in range(3): # batch()
print(sess.run(element2))
for i in range(6): # shuffle()
print(sess.run(element3))
for i in range(24): # repeat()
print(sess.run(element4))
sess.close() # example1: 读取图片和相应的标签并打乱,组成
# batch_size=2 的数据集,重复10 epoch
def _parse_function(imgfilename,label):
image_value = tf.read_file(imgfilename)
img = tf.image.decode_image(image_value)
img = tf.image.resize_images(img,[256,256])
return img,label
def example1():
# 图片列表
filesnames = tf.constant(['name1.jpg','name3.jpg','name5.jpg','name6.jpg','name7.jpg','name8.jpg'])
# 对应标签
labels = tf.constant([0,1,0,1,1,0])
# dataset (名称,标签)
dataset = tf.data.Dataset.from_tensor_slices((filesnames,labels))
# map 映射成图片和标签
dataset = dataset.map(_parse_function)
# shuffle ,batch , repeat
dataset = dataset.shuffle(buffersize=3).batch(2).repeat(10)
return dataset if __name__ == '__main__':
test2()
tensorflow-- Dataset创建数据集对象的更多相关文章
- 022. ASP.NET为DataSet中数据集添加关系及动态创建主子表和添加主子表关系
protected void Page_Load(object sender, EventArgs e) { string connectionString = "server=.;data ...
- DataSet与DataTable对象
DataSet与DataTable对象 摘自:http://www.cnblogs.com/fttbfttb/articles/1509662.html DataSet对象 DataSet是ADO.N ...
- 一个简单的TensorFlow可视化MNIST数据集识别程序
下面是TensorFlow可视化MNIST数据集识别程序,可视化内容是,TensorFlow计算图,表(loss, 直方图, 标准差(stddev)) # -*- coding: utf-8 -*- ...
- R语言实战读书笔记2—创建数据集(上)
第二章 创建数据集 2.1 数据集的概念 不同的行业对于数据集的行和列叫法不同.统计学家称它们为观测(observation)和变量(variable) ,数据库分析师则称其为记录(record)和字 ...
- DataSnap数据库连接池,数据集对象池的应用
传统的应用服务器的开发往往是在ServerMethods单元中拖放一堆TDataSet, TDaTaSetProvider控件,这是一个最简单粗暴的开发方向,往往会造成服务端程序文件的臃肿.服务运行期 ...
- c# 数据库编程(利用DataSet 和 DataAdaper对象操作数据库--单表操作)
一.概述 前面2篇文章,介绍了使用SqlCommand对象利用sql命令来操作数据库. 这篇文章我们来介绍使用c#的DataSet 和 DataAdaper对象操作操作数据库. 先来介绍下这两个对象是 ...
- SSAS系列——【03】多维数据(多维数据集对象)
原文:SSAS系列--[03]多维数据(多维数据集对象) 1.什么是Cube? 简单 Cube 对象由基本信息.维度和度量值组组成. 基本信息包括多维数据集的名称.多维数据集的默认度量值.数据源和存储 ...
- 第一课 导入库 - 创建数据集 - CSV读取 - 导出 - 查找最大值 - 绘制数据
第1课 创建数据 - 我们从创建自己的数据集开始分析.这可以防止阅读本教程的最终用户为得到下面的结果而不得不下载许多文件.我们将把这个数据集导出到一个文本文件中,这样您就可以获得从文本文件中一些拉取数 ...
- 创建javaScript对象的方法
一.工厂模式 function person (name,age) { var p=new Object(); p.name=name; p.age=age; p.showMessage=functi ...
随机推荐
- 5G 调制与解调
调制,就是将原始信号转换为适合在信道中传输的形式的一种过程,在无线通信中,调制一般均指载波调制,而解调则是调制的逆过程,即将原始信号从已调信号中恢复出来. 进行载波调制,主要为实现以下目标: 1)在无 ...
- django查询中模糊的知识点,filter(blog=blog),filter(username=username).first()--这两者只需一招让你分清QuerySet对象,和用户字典对象
只需一招让你分清QuerySet对象,和用户字典对象 article_list = models.Article.objects.filter(blog=blog) user_obj = models ...
- C# 派生和继承(派生类与基类)
using System; using System.Collections.Generic; using System.Text; namespace 继承 { class Program { st ...
- MongoDB(五):更新文档、删除文档
1. 更新文档 MongoDB的uptade()和save()方法用于将集合中的文档更新.update()方法更新现有文档中的值,而save()方法是传递文档数据替换现有文档.从3.2版本开始,Mon ...
- highreport报表工具功能介绍
目前国产报表工具大部分都是Java版本,例如润乾和帆软,而C#写的报表工具国内还没有,介绍一款VS2010(C#)写的国产报表工具(highreport),采用类Excel设计,零代码实现复杂报表展示 ...
- skyline加载arcgis发布的wms服务
function AddWMSLayer(LayerName) {var _WMSUrl =“http://10.0.4.141:6080/arcgis/services/poss1/MapServe ...
- MySQL基础-存储过程
存储过程 定义:将一批为了完成特定功能的SQL语句集,根据传入的参数(也可没有),调用,完成单个sql语句更复杂的功能 存储过程思想很简单,就是SQL语句层面上的代码封装和重用 优点:1) 可封装,并 ...
- Stm32使用串口空闲中断,基于队列来接收不定长、不定时数据
串口持续地接收不定长.不定时的数据,把每一帧数据缓存下来且灵活地利用内存空间,下面提供一种方式供参考.原理是利用串口空闲中断和DMA,每当对方发来一帧完整的数据后,串口接收开始空闲,触发中断,在中断处 ...
- 面试连环炮系列(九):为什么ConcurrentHashMap是线程安全的
为什么ConcurrentHashMap是线程安全的 JDK1.7中,ConcurrentHashMap使用的锁分段技术,将数据分成一段一段的存储,然后给每一段数据配一把锁,当一个线程占用锁访问其中一 ...
- vc6.0 绿色版 下载地址
最新版的vs2019已经完全不支持生成运行在xp下的应用程序 每次在xp下测试,都需要配置好vc6.0,但乱七八糟的太多了,给出地址,绿色版可用 http://www.downcc.com/soft/ ...