发表在2019年CVPR。

核心内容:基于Noise2Noise思想,这篇文章致力于无监督的视频盲去噪:是的,连噪声样本都不需要了。

这篇文章写作和概括太棒了!它的Introduction非常值得回味!它对去噪相关工作的概述、对本文启发工作的简述、对本文工作的概述都非常流畅。

故事

  • 我们拥有的“干净”图像,往往不是干净的。理想的干净图像是从成像传感器上获取的,然而我们看到的图像还经过了相机内部的处理流程。该过程包含量化、去马赛克、伽马校正、压缩等。

  • 因此,如果要对视频去噪,最好能知道有噪视频的生成过程,即所谓的model of processing chain。

  • 然而,该model通常是未知且难以建模的,并且这些噪声通常是与信号相关的(signal-dependent)。

  • 为此,本文作者提出了model-blind的逐帧去噪方法。

  • 为了达到较好的无监督学习性能,该网络是从预训练的DnCNN上fine-tune的。

  • 作者还提出了两种训练模式:on-line和off-line。在on-line模型下,该网络会根据输入视频的前几帧进行fine-tune;在off-line模式下,则可以用一批视频进行训练,效果更好。

  • 本文受到了Noise2Noise思想和one-shot object video segmentation训练方法的启发。在one-shot中,作者借助一个预训练的分割网络,在第一帧中标注目标并fine-tune,以完成视频其余帧的分割任务;在Noise2Noise中,训练目标是最小化 同一张图像的两个有噪版本 之间的差异。本文类似于one-shot的去噪版本,且无需任何干净图像:将视频的相邻帧作为训练目标。

引述本文的一句话:

In this work we show that, for certain kinds of noise, in the context of video denoising one video is enough: a network can be trained from a single noisy video by considering the video itself as a dataset.

本文方法

流程

刚刚说了,我们需要从一个预训练的去噪网络出发。这是因为我们的训练集很小(线上模式只有该视频的几帧)。这也是借鉴one-shot的。

此外,我们假设视频中的相邻帧是同一自然图像的两种有噪分布。但它们仍然存在微小的运动误差。为此,我们采用TV-L1光流[46,37]。该运动补偿方法非常快。补偿后采用双线性插值。显然这里有两点假设:

  1. 相邻帧的噪声分布独立;

  2. 运动补偿后的帧 与 参考帧 的 潜在干净图像 是一致的。

还有,我们还考虑了遮挡,建立了一个遮挡膜(occlusion mask)。我们采用了[4]的简单方法:当光流散度较大时,我们就认为出现了遮挡情况,该点遮挡膜值为1,否则为0。

最后,我们计算损失时,出现遮挡的就不计入计算。即损失等于原损失乘以遮挡膜。

作者采用的是\(L_1\)损失。首先声明,选择损失函数要根据噪声的特性。但在噪声属性未知或复杂的情况下,最直接的办法就是:逐个实验,选其最佳。作者选择\(L_1\),是因为其表现比\(L_2\)更好[50],并且能处理包含泊松、JPEG压缩、低频等噪声。

训练

在线下训练时,我们会对整个视频进行迭代。训练目标是\(L_1\)损失,迭代若干次。

在线上训练时,我们逐帧训练。随着视频播放,迭代帧数会越来越多。这有点契合了life-long learning[47]的思想。

注意,我们还可以换反方向进行运动补偿,从而获得了双倍的训练数据用于迭代。

实验

实验采用的预训练网络,是在标准差25的AWGN下训练的DnCNN。

本文可能是第一篇视频盲去噪工作。因此,作者与Noise clinic、VBM3D和DnCNN进行了对比。

如图,首先探究的是在标准差为25的AWGN下的表现。此时DnCNN表现正常,本文方法无论何种模式,都与DnCNN不相上下。

其次,我们探究在标准差为50的AWGN下的表现。此时,DnCNN表现辣眼睛,而本文方法通过fine-tune逐渐地趋于优秀。

此外,我们还探究了其他噪声:混合高斯、相关、椒盐、JPEG噪声等。效果如图,盲去噪真香!:

两种模式主要差异:线下模式会更稳定,方差更小。

此外还有一个发现:本文方法和DnCNN一样,都会趋于过度平滑。如果将预训练网络换成其他更保真的视频去噪方法,可能会改善这个问题。

Paper | Model-blind video denoising via frame-to-frame training的更多相关文章

  1. 论文笔记:Heterogeneous Memory Enhanced Multimodal Attention Model for Video Question Answering

    Heterogeneous Memory Enhanced Multimodal Attention Model for Video Question Answering 2019-04-25 21: ...

  2. frame与frame之间怎么用jquery传值

    frame与frame之间如何用jquery传值 使用jquery操作iframe 1. 内容里有两个ifame <iframe id="leftiframe"...< ...

  3. com.rabbitmq.client.impl.Frame.readFrom(Frame.java:95)

    RabbitMQ 基于Erlang 实现, 客户端可以用Python | Java | Ruby | PHP | C# | Javascript | Go等语言来实现.这里做个java语言的测试.首先 ...

  4. Note for video Machine Learning and Data Mining——training vs Testing

    Here is the note for lecture five. There will be several points  1. Training and Testing  Both of th ...

  5. Paper | Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising

    目录 故事背景 网络结构 BN和残差学习 拓展到其他任务 发表在2017 TIP. 摘要 Discriminative model learning for image denoising has b ...

  6. Research Guide for Video Frame Interpolation with Deep Learning

    Research Guide for Video Frame Interpolation with Deep Learning This blog is from: https://heartbeat ...

  7. CVPR2016 Paper list

    CVPR2016 Paper list ORAL SESSIONImage Captioning and Question Answering Monday, June 27th, 9:00AM - ...

  8. paper 15 :整理的CV代码合集

    这篇blog,原来是西弗吉利亚大学的Li xin整理的,CV代码相当的全,不知道要经过多长时间的积累才会有这么丰富的资源,在此谢谢LI Xin .我现在分享给大家,希望可以共同进步!还有,我需要说一下 ...

  9. ### Paper about Event Detection

    Paper about Event Detection. #@author: gr #@date: 2014-03-15 #@email: forgerui@gmail.com 看一些相关的论文. 1 ...

随机推荐

  1. 配置SQL Server维护计划-定时备份

    目录 创建维护计划 创建任务 配置维护计划的依赖环境 还原数据库 创建维护计划 打开SQL Server 2014 Management Studio,用SQL Server管理员账户登录. 展开Ma ...

  2. python奇闻杂技

    第一天 01 从计算机到程序设计语言 02 python环境配置 03 实例一:温度转换 04 python语法分析 第二天 01 深入理解python语言 02 实例二,python蟒蛇配置 03 ...

  3. 向github中已创建好的repository提交文件

    git init git remote add origin git@github.com:taishan1994/learn_django.git git pull origin master gi ...

  4. golang--连接redis数据库并进行增删查改

    (1)安装第三方开源的redis库: (2)在使用redis之前,需要安装第三方库,在GOPATH路径下执行安装指令--$GOPATH$:go get github.com/garyburd/redi ...

  5. pytest框架之mark标签

    对测试用例打标签,在运行测试用例的时候,可根据标签名来过滤要运行的用例. 一.注册标签名 1.创建pytest.ini文件,在文件中按如下方式添加标签名: [pytest] markers = smo ...

  6. Map拼接URL地址

    import java.util.HashMap; import java.util.Iterator; import java.util.Map; /** * @Author: hoje * Des ...

  7. php使用inotify扩展监控文件或目录,如果发生改变,就执行指定命令

    通过inotify扩展监控文件或目录的变化,如果发生变化,就执行命令. 可以应用于 swoole 中,如果文件发生变化,就执行 kill -USR1 进程PID 来实现热更新. <?php cl ...

  8. android studio 菜单中的app运行按钮上有个叉号,原因与解决办法(自己去百度)

    http://blog.csdn.net/sz0268/article/details/51706397 : 在Android studio写代码中,直接建立项目,写代码然后运行是不会一般是不会出现这 ...

  9. 基于vue+uniapp直播项目|uni-app仿抖音/陌陌直播室

    一.项目简介 uni-liveShow是一个基于vue+uni-app技术开发的集小视频/IM聊天/直播等功能于一体的微直播项目.界面仿制抖音|火山小视频/陌陌直播,支持编译到多端(H5.小程序.Ap ...

  10. elasticsearch ik同义词

    由于elasticsearch 更新实在太快,配置同义词的资料层次不齐,费尽千辛万苦终于找到了.本文通过一个同义词搜索的简单实例来说明ik同义词的配置. 环境介绍 这点很重要,本文是基于elastic ...