RDD源码分析
RDD源码解析
一、
RDD.scala
- Resilient Distributed Dataset (RDD)
弹性分布式数据集
弹性: 体现在计算上面
- the basic abstraction in Spark
- Represents an immutable
val
RDDA == RDDB
- partitioned collection of elements
- that can be operated on in parallel
RDDA: (1,2,3,4,5,6,7,8,9) operated +1。(对RDD执行加1的操作)
hadoop000:Partition1: (1,2,3) +1
hadoop001:Partition2: (4,5,6) +1
hadoop002:Partition3: (7,8,9) +1
对RDD上的所有元素进行加1,他在hadoop000,hadoop001,hadoop002三台机器上同时进行
对RDD进行操作,也就是对`RDD上的所有分区进行操作`
abstract class RDD[T: ClassTag](
@transient private var _sc: SparkContext,
@transient private var deps: Seq[Dependency[_]]
) extends Serializable with Logging {}
关键字: (从上面获得的信息)
1) 抽象类: RDD必然是有之类实现的,我们使用时直接使用其之类即可
2) Serializable(序列化)
3) Logging(日志)
4) T (泛型)
5) SparkContext (入口点)
6) @transient(注解,暂时不懂)
二、JdbcRDD.scala
class JdbcRDD[T: ClassTag](
sc: SparkContext,
getConnection: () => Connection,
sql: String,
lowerBound: Long,
upperBound: Long,
numPartitions: Int,
mapRow: (ResultSet) => T = JdbcRDD.resultSetToObjectArray _)
extends RDD[T](sc, Nil) with Logging {
三、 RDD五大特性:
Internally, each RDD is characterized by five main properties:
(1、2、3必选,4、5可选)
1) A list of partitions (分区列表)
2) A function for computing each split/partition (用于计算每个 分片/分区 的函数)
3) A list of dependencies on other RDDs (其它的RDD依赖关系)
RDDA => RDDB => RDDC ==> RDDD
4) Optionally, a Partitioner for key-value RDDs (e.g. to say that the RDD is hash-partitioned) (可选的,用于键值RDD的分区程序,(例如: 说明RDD时哈希分区))
5) Optionally, a list of preferred locations to compute each split on (e.g. block locations foran HDFS file) (可选的,用于计算每个首选位置的分片列表(例如: 块位置为HDFS文件))
preferred locations (一个RDD,对应多个partition,所有有 s )
深入理解 RDD 与 关键字 之间的关系
Resilient、Distributed、Dataste (弹性、分布式、数据集)
(木桶原理,性能由最短的那块板决定,由最慢的任务决定计算性能)
四、RDD五大特性和RDD源码中 方法的 对应关系
1) def compute(split: Partition, context: TaskContext): Iterator[T]
2) protected def getPartitions: Array[Partition]
3) protected def getDependencies: Seq[Dependency[_]] = deps
4) protected def getPreferredLocations(split: Partition): Seq[String] = Nil
5) @transient val partitioner: Option[Partitioner] = None
RDD源码分析的更多相关文章
- 第七篇:Spark SQL 源码分析之Physical Plan 到 RDD的具体实现
/** Spark SQL源码分析系列文章*/ 接上一篇文章Spark SQL Catalyst源码分析之Physical Plan,本文将介绍Physical Plan的toRDD的具体实现细节: ...
- Spark中决策树源码分析
1.Example 使用Spark MLlib中决策树分类器API,训练出一个决策树模型,使用Python开发. """ Decision Tree Classifica ...
- SparkMLlib之 logistic regression源码分析
最近在研究机器学习,使用的工具是spark,本文是针对spar最新的源码Spark1.6.0的MLlib中的logistic regression, linear regression进行源码分析,其 ...
- Spark MLlib - Decision Tree源码分析
http://spark.apache.org/docs/latest/mllib-decision-tree.html 以决策树作为开始,因为简单,而且也比较容易用到,当前的boosting或ran ...
- 《深入理解Spark:核心思想与源码分析》(第2章)
<深入理解Spark:核心思想与源码分析>一书前言的内容请看链接<深入理解SPARK:核心思想与源码分析>一书正式出版上市 <深入理解Spark:核心思想与源码分析> ...
- Spark技术内幕:Stage划分及提交源码分析
http://blog.csdn.net/anzhsoft/article/details/39859463 当触发一个RDD的action后,以count为例,调用关系如下: org.apache. ...
- Spark Scheduler模块源码分析之TaskScheduler和SchedulerBackend
本文是Scheduler模块源码分析的第二篇,第一篇Spark Scheduler模块源码分析之DAGScheduler主要分析了DAGScheduler.本文接下来结合Spark-1.6.0的源码继 ...
- Spark Scheduler模块源码分析之DAGScheduler
本文主要结合Spark-1.6.0的源码,对Spark中任务调度模块的执行过程进行分析.Spark Application在遇到Action操作时才会真正的提交任务并进行计算.这时Spark会根据Ac ...
- Spark-RDD之Partition源码分析
概要 Spark RDD主要由Dependency.Partition.Partitioner组成,Partition是其中之一.一份待处理的原始数据会被按照相应的逻辑(例如jdbc和hdfs的spl ...
随机推荐
- C语言中函数返回字符串的4中方法
C语言中函数返回字符串的4中方法 函数的构成部分:返回类型.函数名称.参数.函数主体 参数:函数调用时传入的参数称为实参,函数定义时出现的参数为形参 形参的作用在于接收实参传入的值,形参和函数内部的其 ...
- 网络流(3)——找到最小st-剪切
在大规模战争中,后勤补给是重中之重,为了尽最大可能满足前线的物资消耗,后勤部队必然要充分利用每条运输网.与此同时,交战双方也想要以最小的代价切断敌军的补给,从而使敌军处于孤立无援的境地.在古今中外的各 ...
- nginx搭建代理服务器与负载均衡器
一.代理服务器 服务 功能 配置语法 默认 配置位置 配置举例 结果验证 备注 代理服务 反向代理 proxy_pass URL location.if in location.limit_exc ...
- 线上可用django和gunicorn的dockerfile内容
一,基础镜像 [xxx.com.cn/3rd_part/python.3.6.8:alpine3.9-mysqlclient1.4.2] FROM python:3.6.8-alpine3.7 MAI ...
- 2017年蓝桥杯B组C/C++决赛题解
2017年蓝桥杯B组C/C++决赛题目(不含答案) 1.36进制 ok 求36进制,类比二进制转10进制,36^3 + 36^2 + 36^1 + 36^0 2.磁砖样式 ok dfs搜索 我自己写的 ...
- conda基础命令
1.首先在所在系统中安装Anaconda.可以打开命令行输入conda -V检验是否安装以及当前conda的版本. 2.conda常用的命令. 1)conda list 查看安装了哪些包. 2)con ...
- lua 5 流程控制 if
条件判断中,0 表示 true,只有 nil 才是 false if(0) then -- 可以没有括号 print("0 为 true") elseif 1 then print ...
- PageHelper分页(十)
分页有两种: (1) 物理分页:物理分页依赖的是某一物理实体,这个物理实体就是数据库,比如MySQL数据库提供了limit关键字,程序员只需要编写带有limit关键字的SQL语句,数据库返回的就是分页 ...
- Paper | Recovering Realistic Texture in Image Super-resolution by Deep Spatial Feature Transform
目录 故事背景 空域特征转换 超分辨率网络 发表在2018年CVPR. 摘要 Despite that convolutional neural networks (CNN) have recentl ...
- mysql 实现经纬度排序查找功能
需求如下: 商品有多个门店,用户使用App时需要查找附近门店的商品,商品要进行去重分页. 思路: 1.确认mysql自带经纬度查询函数可以使用. 2.该需求需要利用分组排序,取每个商品最近门店的商品i ...