[b0012] Hadoop 版hello word mapreduce wordcount 运行(二)
目的:
学习Hadoop mapreduce 开发环境eclipse windows下的搭建
环境:
Winows 7 64 eclipse 直接连接hadoop运行的环境已经搭建好,结果输出到eclipse
Hadoop2.6.4环境
相关:
[0004] Hadoop 版hello word mapreduce wordcount 运行
[0011] windows 下 eclipse 开发 hdfs程序样例 (三)
[0008] Windows 7 下 hadoop 2.6.4 eclipse 本地开发调试配置
说明:
这种方式的mapreduce不是在集群上跑。8080web查询不到。
程序是把hdfs上的数据下载到windows本地,执行程序,再将输出结果上传到hdfs。
[遗留:待解决]
1.新建项目
1.1 新建项目、导入hadoop开发包
详细参考
[0007] windows 下 eclipse 开发 hdfs程序样例 1 新建项目
1.2 可选,如果后续执行报错,回头执行这一步
将hadoop下的一个源码包导入,参考 [0008] Y.2.1.b步骤 ,如果还有其他问题 参考[0008]整个搭建过程涉及的设置。
2 新建wordcount类
代码如下
package hdfs; import java.io.IOException;
import java.util.*; import org.apache.hadoop.fs.Path;
import org.apache.hadoop.conf.*;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapreduce.*;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat; /**
* 描述:WordCount explains by xxm
* @author xxm
*/
public class WordCount { /**
* Map类:自己定义map方法
*/
public static class Map extends Mapper<LongWritable, Text, Text, IntWritable> {
/**
* LongWritable, IntWritable, Text 均是 Hadoop 中实现的用于封装 Java 数据类型的类
* 都能够被串行化从而便于在分布式环境中进行数据交换,可以将它们分别视为long,int,String 的替代品。
*/
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
/**
* Mapper类中的map方法:
* protected void map(KEYIN key, VALUEIN value, Context context)
* 映射一个单个的输入k/v对到一个中间的k/v对
* Context类:收集Mapper输出的<k,v>对。
*/
public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String line = value.toString();
StringTokenizer tokenizer = new StringTokenizer(line);
while (tokenizer.hasMoreTokens()) {
word.set(tokenizer.nextToken());
context.write(word, one);
}
}
} /**
* Reduce类:自己定义reduce方法
*/
public static class Reduce extends Reducer<Text, IntWritable, Text, IntWritable> { /**
* Reducer类中的reduce方法:
* protected void reduce(KEYIN key, Interable<VALUEIN> value, Context context)
* 映射一个单个的输入k/v对到一个中间的k/v对
* Context类:收集Reducer输出的<k,v>对。
*/
public void reduce(Text key, Iterable<IntWritable> values, Context context)
throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
context.write(key, new IntWritable(sum));
}
} /**
* main主函数
*/
public static void main(String[] args) throws Exception { Configuration conf = new Configuration();//创建一个配置对象,用来实现所有配置
// conf.set("fs.defaultFS", "hdfs://ssmaster:9000/"); Job job = new Job(conf, "wordcount");//新建一个job,并定义名称 job.setOutputKeyClass(Text.class);//为job的输出数据设置Key类
job.setOutputValueClass(IntWritable.class);//为job输出设置value类 job.setMapperClass(Map.class); //为job设置Mapper类
job.setReducerClass(Reduce.class);//为job设置Reduce类
job.setJarByClass(WordCount.class); job.setInputFormatClass(TextInputFormat.class);//为map-reduce任务设置InputFormat实现类
job.setOutputFormatClass(TextOutputFormat.class);//为map-reduce任务设置OutputFormat实现类 FileInputFormat.addInputPath(job, new Path(args[0]));//为map-reduce job设置输入路径
FileOutputFormat.setOutputPath(job, new Path(args[1]));//为map-reduce job设置输出路径
job.waitForCompletion(true); //运行一个job,并等待其结束
} }
3 执行
eclipse指定 输入输出,执行 ,可以参考[0008] 4.3,4.4执行过程
hdfs://ssmaster:9000/input
hdfs://ssmaster:9000/output
正常控制台的输出结果,和在linux上 hadoop jar执行的输出结果一致。
其他:
可以在eclipse中直接导出成jar,指定main入口, 上传到hadoop linux服务器上,执行hadoop jar xxxx.jar /input /output
总结:
最好的eclipse开发调试方式。 没问题了就打包导出、上传到真实服务器。
[b0012] Hadoop 版hello word mapreduce wordcount 运行(二)的更多相关文章
- [b0013] Hadoop 版hello word mapreduce wordcount 运行(三)
目的: 不用任何IDE,直接在linux 下输入代码.调试执行 环境: Linux Ubuntu Hadoop 2.6.4 相关: [b0012] Hadoop 版hello word mapred ...
- [b0004] Hadoop 版hello word mapreduce wordcount 运行
目的: 初步感受一下hadoop mapreduce 环境: hadoop 2.6.4 1 准备输入文件 paper.txt 内容一般为英文文章,随便弄点什么进去 hadoop@ssmaster:~$ ...
- Hadoop版Helloworld之wordcount运行示例
1.编写一个统计单词数量的java程序,并命名为wordcount.java,代码如下: import java.io.IOException; import java.util.StringToke ...
- Hadoop集群WordCount运行详解(转)
原文链接:Hadoop集群(第6期)_WordCount运行详解 1.MapReduce理论简介 1.1 MapReduce编程模型 MapReduce采用"分而治之"的思想,把对 ...
- hadoop 2.7.3本地环境运行官方wordcount
hadoop 2.7.3本地环境运行官方wordcount 基本环境: 系统:win7 虚机环境:virtualBox 虚机:centos 7 hadoop版本:2.7.3 本次先以独立模式(本地模式 ...
- Hadoop学习历程(四、运行一个真正的MapReduce程序)
上次的程序只是操作文件系统,本次运行一个真正的MapReduce程序. 运行的是官方提供的例子程序wordcount,这个例子类似其他程序的hello world. 1. 首先确认启动的正常:运行 s ...
- (三)配置Hadoop1.2.1+eclipse(Juno版)开发环境,并运行WordCount程序
配置Hadoop1.2.1+eclipse(Juno版)开发环境,并运行WordCount程序 一. 需求部分 在ubuntu上用Eclipse IDE进行hadoop相关的开发,需要在Eclip ...
- hadoop笔记之MapReduce的运行流程
MapReduce的运行流程 MapReduce的运行流程 基本概念: Job&Task:要完成一个作业(Job),就要分成很多个Task,Task又分为MapTask和ReduceTask ...
- Hadoop(六)MapReduce的入门与运行原理
一 MapReduce入门 1.1 MapReduce定义 Mapreduce是一个分布式运算程序的编程框架,是用户开发“基于hadoop的数据分析应用”的核心框架: Mapreduce核心功能是将用 ...
随机推荐
- [20190523]修改参数后一些细节注意2.txt
[20190523]修改参数后一些细节注意2.txt --//上午想模拟链接遇到的情况,链接http://blog.itpub.net/267265/viewspace-2645262/--//就是修 ...
- [视频教程]利用SSH隧道进行远程腾讯云服务器项目xdebug调试
我的远程服务器是腾讯云的ubuntu系统机器,本地我的电脑系统是deepin的系统,使用的IDE是vscode.现在就来使用本地的IDE来调试腾讯云中为网站项目实现逻辑是访问网站域名后,请求被转发给腾 ...
- mysql使用命令
1.创建用户 create user 'name'@'host' identified by 'psssword'; 2.授权 grant select, updata,insert (all) on ...
- Python的3种执行方式
1.Python源程序就是一个特殊格式的文本文件,可以使用任意文本编辑器软件做python的开发,python的文件扩展名为 .py 2.执行python程序的三种方式 解释器:用命令行输入:如输 ...
- eclipse创建java项目
工欲善其事必先利其器,记录一下eclipse怎么创建java项目 0x01:选择工作空间 打开eclipse出现的下面第一个界面,选择java project的空座区间,简单的说就是把你创建的java ...
- 肖哥讲jquery:
jquery 是一个模块 一个库 js封装的一个库 导入jq <script src="jquery.js"></script> <script ...
- MySQL学习笔记7——约束
约束 约束 *约束是添加在列上的,用来约束列的! 1.主键约束(唯一标识) ***非空*** ***唯一*** ***被引用*** *当表的某一列被指定为主键后,该列就不能为空,不能有重复值出现. * ...
- Manthan, Codefest 18 (rated, Div. 1 + Div. 2) E bfs + 离线处理
https://codeforces.com/contest/1037/problem/E 题意 有n个人,m天,在第i天早上,x和y会成为朋友,每天晚上大家都要上车,假如一个人要上车那么他得有至少k ...
- 彻底解决Intellij IDEA中文乱码问题
关于JAVA IDE开发工具,Eclipse系列和Intelli IDEA是大部分公司的主要选择,从开发者的选择角度,Intellij IDEA似乎比Eclipse系列更受欢迎一些.当我们使用Inte ...
- NETCore下IConfiguration和IOptions的用法(转载)
原文:https://www.jianshu.com/p/b9416867e6e6 新建一个NETCore Web API项目,在Startup.cs里就会开始使用IConfiguration和IOp ...