[b0012] Hadoop 版hello word mapreduce wordcount 运行(二)
目的:
学习Hadoop mapreduce 开发环境eclipse windows下的搭建
环境:
Winows 7 64 eclipse 直接连接hadoop运行的环境已经搭建好,结果输出到eclipse
Hadoop2.6.4环境
相关:
[0004] Hadoop 版hello word mapreduce wordcount 运行
[0011] windows 下 eclipse 开发 hdfs程序样例 (三)
[0008] Windows 7 下 hadoop 2.6.4 eclipse 本地开发调试配置
说明:
这种方式的mapreduce不是在集群上跑。8080web查询不到。
程序是把hdfs上的数据下载到windows本地,执行程序,再将输出结果上传到hdfs。
[遗留:待解决]
1.新建项目
1.1 新建项目、导入hadoop开发包
详细参考
[0007] windows 下 eclipse 开发 hdfs程序样例 1 新建项目
1.2 可选,如果后续执行报错,回头执行这一步
将hadoop下的一个源码包导入,参考 [0008] Y.2.1.b步骤 ,如果还有其他问题 参考[0008]整个搭建过程涉及的设置。
2 新建wordcount类
代码如下
package hdfs; import java.io.IOException;
import java.util.*; import org.apache.hadoop.fs.Path;
import org.apache.hadoop.conf.*;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapreduce.*;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat; /**
* 描述:WordCount explains by xxm
* @author xxm
*/
public class WordCount { /**
* Map类:自己定义map方法
*/
public static class Map extends Mapper<LongWritable, Text, Text, IntWritable> {
/**
* LongWritable, IntWritable, Text 均是 Hadoop 中实现的用于封装 Java 数据类型的类
* 都能够被串行化从而便于在分布式环境中进行数据交换,可以将它们分别视为long,int,String 的替代品。
*/
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
/**
* Mapper类中的map方法:
* protected void map(KEYIN key, VALUEIN value, Context context)
* 映射一个单个的输入k/v对到一个中间的k/v对
* Context类:收集Mapper输出的<k,v>对。
*/
public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String line = value.toString();
StringTokenizer tokenizer = new StringTokenizer(line);
while (tokenizer.hasMoreTokens()) {
word.set(tokenizer.nextToken());
context.write(word, one);
}
}
} /**
* Reduce类:自己定义reduce方法
*/
public static class Reduce extends Reducer<Text, IntWritable, Text, IntWritable> { /**
* Reducer类中的reduce方法:
* protected void reduce(KEYIN key, Interable<VALUEIN> value, Context context)
* 映射一个单个的输入k/v对到一个中间的k/v对
* Context类:收集Reducer输出的<k,v>对。
*/
public void reduce(Text key, Iterable<IntWritable> values, Context context)
throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
context.write(key, new IntWritable(sum));
}
} /**
* main主函数
*/
public static void main(String[] args) throws Exception { Configuration conf = new Configuration();//创建一个配置对象,用来实现所有配置
// conf.set("fs.defaultFS", "hdfs://ssmaster:9000/"); Job job = new Job(conf, "wordcount");//新建一个job,并定义名称 job.setOutputKeyClass(Text.class);//为job的输出数据设置Key类
job.setOutputValueClass(IntWritable.class);//为job输出设置value类 job.setMapperClass(Map.class); //为job设置Mapper类
job.setReducerClass(Reduce.class);//为job设置Reduce类
job.setJarByClass(WordCount.class); job.setInputFormatClass(TextInputFormat.class);//为map-reduce任务设置InputFormat实现类
job.setOutputFormatClass(TextOutputFormat.class);//为map-reduce任务设置OutputFormat实现类 FileInputFormat.addInputPath(job, new Path(args[0]));//为map-reduce job设置输入路径
FileOutputFormat.setOutputPath(job, new Path(args[1]));//为map-reduce job设置输出路径
job.waitForCompletion(true); //运行一个job,并等待其结束
} }
3 执行
eclipse指定 输入输出,执行 ,可以参考[0008] 4.3,4.4执行过程
hdfs://ssmaster:9000/input
hdfs://ssmaster:9000/output
正常控制台的输出结果,和在linux上 hadoop jar执行的输出结果一致。
其他:
可以在eclipse中直接导出成jar,指定main入口, 上传到hadoop linux服务器上,执行hadoop jar xxxx.jar /input /output
总结:
最好的eclipse开发调试方式。 没问题了就打包导出、上传到真实服务器。
[b0012] Hadoop 版hello word mapreduce wordcount 运行(二)的更多相关文章
- [b0013] Hadoop 版hello word mapreduce wordcount 运行(三)
目的: 不用任何IDE,直接在linux 下输入代码.调试执行 环境: Linux Ubuntu Hadoop 2.6.4 相关: [b0012] Hadoop 版hello word mapred ...
- [b0004] Hadoop 版hello word mapreduce wordcount 运行
目的: 初步感受一下hadoop mapreduce 环境: hadoop 2.6.4 1 准备输入文件 paper.txt 内容一般为英文文章,随便弄点什么进去 hadoop@ssmaster:~$ ...
- Hadoop版Helloworld之wordcount运行示例
1.编写一个统计单词数量的java程序,并命名为wordcount.java,代码如下: import java.io.IOException; import java.util.StringToke ...
- Hadoop集群WordCount运行详解(转)
原文链接:Hadoop集群(第6期)_WordCount运行详解 1.MapReduce理论简介 1.1 MapReduce编程模型 MapReduce采用"分而治之"的思想,把对 ...
- hadoop 2.7.3本地环境运行官方wordcount
hadoop 2.7.3本地环境运行官方wordcount 基本环境: 系统:win7 虚机环境:virtualBox 虚机:centos 7 hadoop版本:2.7.3 本次先以独立模式(本地模式 ...
- Hadoop学习历程(四、运行一个真正的MapReduce程序)
上次的程序只是操作文件系统,本次运行一个真正的MapReduce程序. 运行的是官方提供的例子程序wordcount,这个例子类似其他程序的hello world. 1. 首先确认启动的正常:运行 s ...
- (三)配置Hadoop1.2.1+eclipse(Juno版)开发环境,并运行WordCount程序
配置Hadoop1.2.1+eclipse(Juno版)开发环境,并运行WordCount程序 一. 需求部分 在ubuntu上用Eclipse IDE进行hadoop相关的开发,需要在Eclip ...
- hadoop笔记之MapReduce的运行流程
MapReduce的运行流程 MapReduce的运行流程 基本概念: Job&Task:要完成一个作业(Job),就要分成很多个Task,Task又分为MapTask和ReduceTask ...
- Hadoop(六)MapReduce的入门与运行原理
一 MapReduce入门 1.1 MapReduce定义 Mapreduce是一个分布式运算程序的编程框架,是用户开发“基于hadoop的数据分析应用”的核心框架: Mapreduce核心功能是将用 ...
随机推荐
- python生产者和消费者模式实现(二)多进程方式
import timeimport randomfrom multiprocessing import Process, Queue # 生产者def producer(q, i): food = ' ...
- 5.JavaCC官方入门指南-概述
一.前言 在最开始使用JavaCC的时候,从网上查询了许多资料,但是网上的资料水平是参差不齐的,走了许多弯路,不得已自己查阅了英文版官网文档.令我伤心的是最后我回过头来再看那些博客资料时,发现其实 ...
- 必学PHP类库/常用PHP类库大全,php 类库分类-收集
依赖管理( Dependency Management ) 用于依赖管理的包和框架 Composer / Packagist - 一个包和依赖管理器. Composer Installers - 一个 ...
- 5-2可视化库Seaborn-调色板
In [1]: import numpy as np import seaborn as sns import matplotlib.pyplot as plt %matplotlib inline ...
- Windows 10系统迁移
快速复制硬盘可以调整目标盘分区大小(适用于不同容量的硬盘克隆) 调整完目标盘的系统分区大小后将恢复分区拖到系统分区后面对齐,恢复分区后面既可留出未分配容量用作Linux系统安装. 克隆完成后对uefi ...
- kettle教程---增量更新
以下操作都在5.0.1版本下进行开发,其余版本可以进行自动比对 在平时工作当中,会遇到这种情况,而且很常见.比如:增量抽取(每隔2个小时抽取截至到上次抽取时间的记录) 一.操作前提: 存在3张表,源表 ...
- jTopo介绍(一)
jTopo(Javascript Topology library)是一款完全基于HTML5 Canvas的关系.拓扑图形化界面开发工具包.jTopo关注于数据的图形展示,它是面向开发人员的,需要进行 ...
- Vue介绍(一)
官网:https://cn.vuejs.org/ Vue (读音 /vjuː/,类似于 view) 是一套用于构建用户界面的渐进式框架.与其它大型框架不同的是,Vue 被设计为可以自底向上逐层应用.V ...
- <Binary Search> 81 (高频)34 (很难hard, 高频)315 (hard)354
81. Search in Rotated Sorted Array II 如果中间的数小于最右边的数,则右半段是有序的,若中间数大于最右边数,则左半段是有序的.而如果可以有重复值,就会出现来面两种情 ...
- 【正则】day01
正则表达式一.概述 验证 网络爬虫. 概念: 具有语法格式的字符串. 函数 PCRE 1.perl语言正则语法兼容.(java c) 2.速度快,效率高. P ...