P和C
import tensorflow as tf
import numpy as np
import math
import keras
from keras.layers import Conv2D,Reshape,Input
import numpy as np
import matplotlib.pyplot as plt """ Channel attention module""" if __name__ == '__main__':
file = tf.read_file('img.jpg')
x = tf.image.decode_jpeg(file)
#print("Tensor:", x)
sess = tf.Session()
x1 = sess.run(x)
print("x1:",x1)
gamma = 0.05
sess = tf.Session()
x1 = sess.run(x)
x1 = tf.expand_dims(x1, dim =0)
print("x1.shape:", x1.shape) m_batchsize, height, width, C = x1.shape proj_query = Reshape((width * height, C))(x1)
print("proj_query:", type(proj_query))
print("proj_query:", proj_query.shape)
proj_query = sess.run(proj_query)
print(proj_query)
proj_key = Reshape((width * height, C))(x1)
proj_key = sess.run(proj_key).transpose(0, 2, 1)
print(proj_key)
print("proj_key:", type(proj_key))
print("proj_key:", proj_key.shape) proj_query = proj_query.astype(np.float32)
proj_key = proj_key.astype(np.float32) # N, C, C, bmm 批次矩阵乘法
energy = tf.matmul(proj_key,proj_query)
energy = sess.run(energy)
print("energy:", energy) # 这里实现了softmax用最后一维的最大值减去了原始数据, 获得了一个不是太大的值
# 沿着最后一维的C选择最大值, keepdim保证输出和输入形状一致, 除了指定的dim维度大小为1
energy_new = tf.reduce_max(energy, -1, keep_dims=True)
print("after_softmax_energy:",sess.run(energy_new)) sess = tf.Session()
e = energy_new
print("b:", sess.run(energy_new)) size = energy.shape[1]
for i in range(size - 1):
e = tf.concat([e, energy_new], axis=-1) energy_new = e
print("energy_new2:", sess.run(energy_new))
energy_new = energy_new - energy
print("energy_new3:", sess.run(energy_new)) attention = tf.nn.softmax(energy_new, axis=-1)
print("attention:", sess.run(attention)) proj_value = Reshape((width * height, C))(x1)
proj_value = sess.run(proj_value)
proj_value = proj_value.astype(np.float32)
print("proj_value:", proj_value.shape)
out = tf.matmul(proj_value, attention) out = sess.run(out)
#plt.imshow(out)
print("out1:", out)
out = out.reshape(m_batchsize, width * height, C)
#out1 = out.reshape(m_batchsize, C, height, width)
print("out2:", out.shape) out = gamma * out + x
#out = sess.run(out)
#out = out.astype(np.int16)
print("out3:", out)
import tensorflow as tf
import numpy as np
import math
import keras
from keras.layers import Conv2D,Reshape,Input
from keras.regularizers import l2
from keras.layers.advanced_activations import ELU, LeakyReLU
from keras import Model
import cv2 """
Important: 1、A为CxHxW => Conv+BN+ReLU => B, C 都为CxHxW 2、Reshape B, C to CxN (N=HxW)
3、Transpose B to B’
4、Softmax(Matmul(B’, C)) => spatial attention map S为NxN(HWxHW)
5、如上式1, 其中sji测量了第i个位置在第j位置上的影响
6、也就是第i个位置和第j个位置之间的关联程度/相关性, 越大越相似.
7、A => Covn+BN+ReLU => D 为CxHxW => reshape to CxN
8、Matmul(D, S’) => CxHxW, 这里设置为DS
9、Element-wise sum(scale parameter alpha * DS, A) => the final output E 为 CxHxW (式2)
10、alpha is initialized as 0 and gradually learn to assign more weight.
"""
"""
inputs :
x : input feature maps( N X C X H X W)
returns :
out : attention value + input feature
attention: N X (HxW) X (HxW)
"""
""" Position attention module"""
if __name__ == '__main__':
#x = tf.random_uniform([2, 7, 7, 3],minval=0,maxval=255,dtype=tf.float32)
file = tf.read_file('img.jpg')
x = tf.image.decode_jpeg(file)
#x = cv2.imread('ROIVIA3.jpg')
print(x)
gamma = 0.05
sess = tf.Session()
x1 = sess.run(x)
x1 = tf.expand_dims(x1, axis=0)
print(x1.shape)
in_dim = 3 xlen = x1.shape[1]
ylen = x1.shape[2]
input = Input(shape=(xlen,ylen,3))
query_conv = Conv2D(1, (1,1), activation='relu',kernel_initializer='he_normal')(input)
key_conv = Conv2D(1, (1, 1), activation='relu', kernel_initializer='he_normal')(input)
value_conv = Conv2D(3, (1, 1), activation='relu', kernel_initializer='he_normal')(input)
print(query_conv) batchsize, height, width, C = x1.shape
#print(C, height, width )
# B => N, C, HW
proj_query = Reshape(( width * height ,1))(query_conv)
proj_key = Reshape(( width * height, 1))(key_conv)
proj_value = Reshape((width * height, 3))(value_conv)
print("proj_query:",proj_query)
print("proj_key:", proj_key)
print("proj_value:",proj_value.shape)
model = Model(inputs=[input],outputs=[proj_query])
model.compile(optimizer='adam',loss='binary_crossentropy')
proj_query = model.predict(x1,steps=1)
print("proj_query:",proj_query)
# B' => N, HW, C
proj_query = proj_query.transpose(0, 2, 1)
print("proj_query2:", proj_query.shape)
print("proj_query2:", type(proj_query))
# C => N, C, HW
model1 = Model(inputs=[input], outputs=[proj_key])
model1.compile(optimizer='adam', loss='binary_crossentropy')
proj_key = model1.predict(x1, steps=1)
print("proj_key:", proj_key.shape) print(proj_key)
# B'xC => N, HW, HW
energy = tf.matmul(proj_key, proj_query)
print("energy:",energy.shape) # S = softmax(B'xC) => N, HW, HW
attention = tf.nn.softmax(energy, axis=-1)
print("attention:", attention.shape) # D => N, C, HW
model2 = Model(inputs=[input], outputs=[proj_value])
model2.compile(optimizer='adam', loss='binary_crossentropy')
proj_value = model2.predict(x1, steps=1)
print("proj_value:",proj_value.shape) # DxS' => N, C, HW
out = tf.matmul(proj_value, sess.run(attention).transpose(0, 2, 1))
print("out:", out.shape) # N, C, H, W
out = Reshape((height, width, 3))(out)
print("out1:", out.shape) out = gamma * out + sess.run(x1)
print("out2:", type(out))
随机推荐
- ELK + Filebeat 日志分析系统
ELK + Filebeat 日志分析系统 架构图 环境 OS:CentOS 7.4 Filebeat: 6.3.2 Logstash: 6.3.2 Elasticsearch 6.3.2 Kiban ...
- C# 6.0:Null – Conditional 操作符
在引入nameof操作符的同时,C# 6.0 还引入了Null-Conditional操作符.它使开发者可以检查object引用链中的null值.这个null-conditional 操作符写作&qu ...
- SpringCloud启动类指定扫描包路径
//如果这个启动类所在的包路径隐藏的很深,则需要指定扫描包.否则默认扫描启动类所在的子包路径下 @SpringBootApplication(scanBasePackages="com.jo ...
- Python——PyQt GUI编程(python programming)
import sys from math import * from PyQt5.QtCore import * from PyQt5.QtGui import * from PyQt5.QtWidg ...
- ERROR 2002 (HY000): Can't connect to local MySQL server through socket '/var/lib/mysql/mysql.sock' (13)解答
我在使用mysqll客户端连接我的mysql服务器的时候,出现了上述的问题.我的操作系统是ubuntu,安装版本是对应的64位服务器.我的服务器的启动方式是sudo service mysql sta ...
- Redis的过期策略和内存淘汰策略(转)
Redis的过期策略 我们都知道,Redis是key-value数据库,我们可以设置Redis中缓存的key的过期时间.Redis的过期策略就是指当Redis中缓存的key过期了,Redis如何处理. ...
- MYSQL-联合索引
深入理解 index merge 是使用索引进行优化的重要基础之一.理解了 index merge 技术,我们才知道应该如何在表上建立索引. 1. 为什么会有index merge 我们的 where ...
- web前端基础学习路线
1.HTML和CSS的基础知识,完成网页的初步设计 2.JavaScript基础知识和DOM.BOM的学习 3.前端基础框架:CSS框架Bootstrap.JavaScript框架jquery的熟悉使 ...
- C# & JAVA:读写文件
using System; using System.IO; using System.Text; namespace ConsoleApplication4 { class Program { pu ...
- Python 有道翻译 爬虫 有道翻译API 突破有道翻译反爬虫机制
py2.7 #coding: utf-8 import time import random import hashlib import requests while(1): url = 'http: ...