P和C
import tensorflow as tf
import numpy as np
import math
import keras
from keras.layers import Conv2D,Reshape,Input
import numpy as np
import matplotlib.pyplot as plt """ Channel attention module""" if __name__ == '__main__':
file = tf.read_file('img.jpg')
x = tf.image.decode_jpeg(file)
#print("Tensor:", x)
sess = tf.Session()
x1 = sess.run(x)
print("x1:",x1)
gamma = 0.05
sess = tf.Session()
x1 = sess.run(x)
x1 = tf.expand_dims(x1, dim =0)
print("x1.shape:", x1.shape) m_batchsize, height, width, C = x1.shape proj_query = Reshape((width * height, C))(x1)
print("proj_query:", type(proj_query))
print("proj_query:", proj_query.shape)
proj_query = sess.run(proj_query)
print(proj_query)
proj_key = Reshape((width * height, C))(x1)
proj_key = sess.run(proj_key).transpose(0, 2, 1)
print(proj_key)
print("proj_key:", type(proj_key))
print("proj_key:", proj_key.shape) proj_query = proj_query.astype(np.float32)
proj_key = proj_key.astype(np.float32) # N, C, C, bmm 批次矩阵乘法
energy = tf.matmul(proj_key,proj_query)
energy = sess.run(energy)
print("energy:", energy) # 这里实现了softmax用最后一维的最大值减去了原始数据, 获得了一个不是太大的值
# 沿着最后一维的C选择最大值, keepdim保证输出和输入形状一致, 除了指定的dim维度大小为1
energy_new = tf.reduce_max(energy, -1, keep_dims=True)
print("after_softmax_energy:",sess.run(energy_new)) sess = tf.Session()
e = energy_new
print("b:", sess.run(energy_new)) size = energy.shape[1]
for i in range(size - 1):
e = tf.concat([e, energy_new], axis=-1) energy_new = e
print("energy_new2:", sess.run(energy_new))
energy_new = energy_new - energy
print("energy_new3:", sess.run(energy_new)) attention = tf.nn.softmax(energy_new, axis=-1)
print("attention:", sess.run(attention)) proj_value = Reshape((width * height, C))(x1)
proj_value = sess.run(proj_value)
proj_value = proj_value.astype(np.float32)
print("proj_value:", proj_value.shape)
out = tf.matmul(proj_value, attention) out = sess.run(out)
#plt.imshow(out)
print("out1:", out)
out = out.reshape(m_batchsize, width * height, C)
#out1 = out.reshape(m_batchsize, C, height, width)
print("out2:", out.shape) out = gamma * out + x
#out = sess.run(out)
#out = out.astype(np.int16)
print("out3:", out)
import tensorflow as tf
import numpy as np
import math
import keras
from keras.layers import Conv2D,Reshape,Input
from keras.regularizers import l2
from keras.layers.advanced_activations import ELU, LeakyReLU
from keras import Model
import cv2 """
Important: 1、A为CxHxW => Conv+BN+ReLU => B, C 都为CxHxW 2、Reshape B, C to CxN (N=HxW)
3、Transpose B to B’
4、Softmax(Matmul(B’, C)) => spatial attention map S为NxN(HWxHW)
5、如上式1, 其中sji测量了第i个位置在第j位置上的影响
6、也就是第i个位置和第j个位置之间的关联程度/相关性, 越大越相似.
7、A => Covn+BN+ReLU => D 为CxHxW => reshape to CxN
8、Matmul(D, S’) => CxHxW, 这里设置为DS
9、Element-wise sum(scale parameter alpha * DS, A) => the final output E 为 CxHxW (式2)
10、alpha is initialized as 0 and gradually learn to assign more weight.
"""
"""
inputs :
x : input feature maps( N X C X H X W)
returns :
out : attention value + input feature
attention: N X (HxW) X (HxW)
"""
""" Position attention module"""
if __name__ == '__main__':
#x = tf.random_uniform([2, 7, 7, 3],minval=0,maxval=255,dtype=tf.float32)
file = tf.read_file('img.jpg')
x = tf.image.decode_jpeg(file)
#x = cv2.imread('ROIVIA3.jpg')
print(x)
gamma = 0.05
sess = tf.Session()
x1 = sess.run(x)
x1 = tf.expand_dims(x1, axis=0)
print(x1.shape)
in_dim = 3 xlen = x1.shape[1]
ylen = x1.shape[2]
input = Input(shape=(xlen,ylen,3))
query_conv = Conv2D(1, (1,1), activation='relu',kernel_initializer='he_normal')(input)
key_conv = Conv2D(1, (1, 1), activation='relu', kernel_initializer='he_normal')(input)
value_conv = Conv2D(3, (1, 1), activation='relu', kernel_initializer='he_normal')(input)
print(query_conv) batchsize, height, width, C = x1.shape
#print(C, height, width )
# B => N, C, HW
proj_query = Reshape(( width * height ,1))(query_conv)
proj_key = Reshape(( width * height, 1))(key_conv)
proj_value = Reshape((width * height, 3))(value_conv)
print("proj_query:",proj_query)
print("proj_key:", proj_key)
print("proj_value:",proj_value.shape)
model = Model(inputs=[input],outputs=[proj_query])
model.compile(optimizer='adam',loss='binary_crossentropy')
proj_query = model.predict(x1,steps=1)
print("proj_query:",proj_query)
# B' => N, HW, C
proj_query = proj_query.transpose(0, 2, 1)
print("proj_query2:", proj_query.shape)
print("proj_query2:", type(proj_query))
# C => N, C, HW
model1 = Model(inputs=[input], outputs=[proj_key])
model1.compile(optimizer='adam', loss='binary_crossentropy')
proj_key = model1.predict(x1, steps=1)
print("proj_key:", proj_key.shape) print(proj_key)
# B'xC => N, HW, HW
energy = tf.matmul(proj_key, proj_query)
print("energy:",energy.shape) # S = softmax(B'xC) => N, HW, HW
attention = tf.nn.softmax(energy, axis=-1)
print("attention:", attention.shape) # D => N, C, HW
model2 = Model(inputs=[input], outputs=[proj_value])
model2.compile(optimizer='adam', loss='binary_crossentropy')
proj_value = model2.predict(x1, steps=1)
print("proj_value:",proj_value.shape) # DxS' => N, C, HW
out = tf.matmul(proj_value, sess.run(attention).transpose(0, 2, 1))
print("out:", out.shape) # N, C, H, W
out = Reshape((height, width, 3))(out)
print("out1:", out.shape) out = gamma * out + sess.run(x1)
print("out2:", type(out))
随机推荐
- htm,css,javascript及其他的注释方式
转自:http://www.cnblogs.com/dapeng111/archive/2012/12/23/2829774.html 一.HTML的注释方法<!-- html注释:START ...
- submit提交判断
body部分 <form action='https://www.baidu.com' method='post' > 用 户 名:<input ...
- Difference between hash() and id()
https://stackoverflow.com/questions/34402522/difference-between-hash-and-id There are three concepts ...
- LeetCode 789. Escape The Ghosts
题目链接:https://leetcode.com/problems/escape-the-ghosts/description/ You are playing a simplified Pacma ...
- Vue公司项目实战步骤
一.无权限,无验证的Vue项目 1.打好HTML+CSS+JS基础,及<Vue 2.0 实战> 2.编写用mock设计的案例: 3.将以上案例的后台用C#改写: 二.带安全验证的Vue项目 ...
- ALTER TABLE causes auto_increment resequencing, resulting in duplicate entry ’1′ for key ‘PRIMARY’
在打开navicat设计表时,想更改主键id为自动增长,会弹出来这么一个提示.翻译为:更改表将导致自动增长(列)的重新排序,主键会有重复的‘1’.原因是因为auto_increment是从1开始自增的 ...
- VS2017离线版的SSDT安装包(包括SSIS)
VS2017离线版的SSDT安装包(包括SSIS) 装好SQL2016和VS2017后发现没有创建SSIS项目的接口,原来VS2017里是没有包含SSDT的安装包的. 下面是我整理好的包含中英文的VS ...
- SpringMVC Controller接收前台ajax的GET或POST请求返回各种参数
这几天写新项目遇到这个问题,看这位博主总结得不错,懒得写了,直接转!原文:http://blog.csdn.net/yixiaoping/article/details/45281721原文有些小错误 ...
- 嵌入式 printf函数
来自:https://www.cnblogs.com/02xiaoma/archive/2012/06/22/2558618.html #include <stdio.h> #includ ...
- Vue 封装可向左向右查看图片列表的组件
<template> <div class="content-container"> <div class="content-contain ...