Codeforces 1065E(计数)
题意
限定字符串长度为$n$,字符集规模为$A$,以及$m$个数字$b$,对于任意数字$bi$满足长度为$bi$的前缀和后缀先反转再交换位置后形成的新串与原串视作相等,问存在多少不同串。
思路
设$c[i]=b[i]-b[i-1]$,将字符串看成由长度$c[1],c[2],c[3]...n-2*b[m]...c[3],c[2],c[1]$串构成,那么只需考虑$c$中对应串的方案数和中间单独的方案数,相乘即答案。
假设考虑$k$位,形成回文的对应串有$A^{k}$,不形成的有$\frac{A^{2k}-A^{k}}{2}$,相加后得$\frac{A^{k}*(A^{k}+1)}{2}$,中间即$A^{n-2*b[m]}$。
代码
#include <bits/stdc++.h>
#define DBG(x) cerr << #x << " = " << x << endl;
const long long mod = 998244353;
const int maxn = 2e5+5;
using namespace std;
typedef long long LL; LL n,m,A;
LL b[maxn]; LL qpow(LL a,LL b,LL p){
LL res=1;
while(b){
if(b&1)res=(res*a)%p;
a=a*a%p,b/=2;
}return res;
} int main(){
scanf("%I64d%I64d%I64d",&n,&m,&A);
for(int i=1;i<=m;i++)scanf("%I64d",&b[i]);
LL ans=1,inv=qpow(2,mod-2,mod);
for(int i=1;i<=m;i++){
LL tmp=qpow(A,b[i]-b[i-1],mod);
ans=ans*tmp%mod*(1+tmp)%mod*inv%mod;
}
ans*=qpow(A,n-2*b[m],mod);
printf("%I64d\n",ans%mod);
return 0;
}
Codeforces 1065E(计数)的更多相关文章
- CodeForces 1065E. Side Transmutations 计数
昨天不该早点走的.... 首先操作限制实际上是一个回文限制 每个$b[i] - b[i - 1]$互不干扰,不妨设这个串关于中心点对称的这么一对区间的串分别为$(S_1, S_2)$ 题目的限制相当与 ...
- CodeForces 558E(计数排序+线段树优化)
题意:一个长度为n的字符串(只包含26个小字母)有q次操作 对于每次操作 给一个区间 和k k为1把该区间的字符不降序排序 k为0把该区间的字符不升序排序 求q次操作后所得字符串 思路: 该题数据规模 ...
- Pave the Parallelepiped CodeForces - 1007B (计数)
大意: 给定A,B,C, 求有多少个三元组$(a,b,c)$, 满足$a \le b \le c$, 且以若干个$(a,b,c)$为三边的长方体能填满边长(A,B,C)的长方体. 暴力枚举出$A,B, ...
- Bug in Code CodeForces - 420C (计数,图论)
大意: 给定$n$结点无向图, 共n条边, 有重边无自环, 求有多少点对(u,v), 满足经过u和v的边数>=p 可以用双指针先求出所有$deg_u+deg_v \ge p$的点对, 但这样会多 ...
- A Creative Cutout CodeForces - 933D (计数)
大意:给定$n$个圆, 圆心均在原点, 第$k$个圆半径为$\sqrt{k}$ 定义一个点的美丽值为所有包含这个点的圆的编号和 定义函数$f(n)$为只有$n$个圆时所有点的贡献,求$\sum_{k= ...
- codeforces 466C 计数 codeforces 483B 二分 容斥
题意:给你n个数,将他们分成连续的三个部分使得每个部分的和相同,求出分法的种数. 思路:用一个数组a[i]记下从第一个点到当前i点的总和.最后一个点是总和为sum的点,只需求出总和为1/3sum的点和 ...
- Scalar Queries CodeForces - 1167F (计数,树状数组)
You are given an array $a_1,a_2,…,a_n$. All $a_i$ are pairwise distinct. Let's define function $f(l, ...
- 计数排序 + 线段树优化 --- Codeforces 558E : A Simple Task
E. A Simple Task Problem's Link: http://codeforces.com/problemset/problem/558/E Mean: 给定一个字符串,有q次操作, ...
- Codeforces 588E. A Simple Task (线段树+计数排序思想)
题目链接:http://codeforces.com/contest/558/problem/E 题意:有一串字符串,有两个操作:1操作是将l到r的字符串升序排序,0操作是降序排序. 题解:建立26棵 ...
随机推荐
- LOJ#3023 老C的键盘
给定树,每条边有个大于号或者小于号,表示两个节点编号的大小关系.问有多少种树满足条件.n <= 100 解:树形DP. 设fij表示以i为根的子树中i是第j小的.转移的时候要乘上两个组合数. # ...
- 网上找的Backbone.js
// Backbone.js 0.9.2 // (c) 2010-2012 Jeremy Ashkenas, DocumentCloud Inc. // Backbone may be freely ...
- 华为2018软件岗笔试题之第一题python求解分享
闲来无事,突然看到博客园首页上有人写了篇了华为2018软件岗笔试题解题思路和源代码分享.看了下题目,感觉第一题能做出来,就想着用刚刚学的python试着写一下,花费的时间有点长~~,看来又好长时间没练 ...
- 2050 Programming Competition (CCPC)
Pro&Sol 链接: https://pan.baidu.com/s/17Tt3EPKEQivP2-3OHkYD2A 提取码: wbnu 复制这段内容后打开百度网盘手机App,操作更方便哦 ...
- mybatis 插入一条记录 参数为map的写法
xml: <insert id="insertUser" parameterType="java.util.Map"> insert into us ...
- terminate called without an active exception异常
在gcc4.4下,采用回调机制写了一个类似std::thread的线程类. 但是使用时却发生了核心已转移的错误. main函数调用的代码大致是 int main(int argc, char *arg ...
- Java Web 开发必须掌握的三个技术:Token、Cookie、Session
在Web应用中,HTTP请求是无状态的.即:用户第一次发起请求,与服务器建立连接并登录成功后,为了避免每次打开一个页面都需要登录一下,就出现了cookie,Session. Cookie Cookie ...
- 【强大知名的CAD绘图工具】AutoCAD 2019 for Mac
以上图片来源于互联网分享,如涉及版权问题请联系作者删除. 文章素材来源:风云社区(www.scoee.com) 下载地址:风云社区(www.scoee.com) [简介] AutoCAD 2019 ...
- Linux 普通用户免密码切换到root用户
Linux 普通用户免密码切换到root用户 # 添加用户 useradd user_name # 修改密码 echo "user_name@pwd" | passwd --std ...
- 兄弟连Linux运维学习笔记
最新经典linux运维兄弟连Linux运维学习笔记... --------------- 全程1.5倍播放.加油我一定可以学完Linux----------------------Unix与Linux ...