B+树及数据库索引的应用
B树
每个节点都存储key和data,所有节点组成这棵树,并且叶子节点指针为null。
B+树
只有叶子节点存储data,叶子节点包含了这棵树的所有键值,叶子节点不存储指针。
后来,在B+树上增加了顺序访问指针,也就是每个叶子节点增加一个指向相邻叶子节点的指针,这样一棵树成了数据库系统实现索引的首选数据结构。
原因有很多,最主要的是这棵树矮胖,呵呵。一般来说,索引很大,往往以索引文件的形式存储的磁盘上,索引查找时产生磁盘I/O消耗,相对于内存存取,I/O存取的消耗要高几个数量级,所以评价一个数据结构作为索引的优劣最重要的指标就是在查找过程中磁盘I/O操作次数的时间复杂度。树高度越小,I/O次数越少。
那为什么是B+树而不是B树呢,因为它内节点不存储data,这样一个节点就可以存储更多的key。
在MySQL中,最常用的两个存储引擎是MyISAM和InnoDB,它们对索引的实现方式是不同的。
MyISAM
data存的是数据地址。索引是索引,数据是数据。
InnoDB
data存的是数据本身。索引也是数据。
B+树及数据库索引的应用的更多相关文章
- B树在数据库索引中的应用剖析
引言 关于数据库索引,google一个oracle index,mysql index总 有大量的结果,其中很多的使用方法推荐,**索引之n条经典建议云云.笔者认为,较之借鉴,在搞清楚了自己的需求的基 ...
- 为什么选择B+树作为数据库索引结构?
背景 首先,来谈谈B树.为什么要使用B树?我们需要明白以下两个事实: [事实1] 不同容量的存储器,访问速度差异悬殊.以磁盘和内存为例,访问磁盘的时间大概是ms级的,访问内存的时间大概是ns级的.有个 ...
- 程序员的算法课(16)-B+树在数据库索引中的作用
版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/m0_37609579/article/de ...
- B+树作为数据库索引有什么优势?I/O方面?
首先要了解磁盘预读机制,大致就是说,从磁盘读取数据的速度比从内存读取数据的速度要慢很多,所以要尽量减少磁盘I/O的操作,尽量增加内存I/O操作,既然这样,我们可以从磁盘提前把需要的数据拿到内存,这样需 ...
- 【转】B-树和B+树的应用:数据搜索和数据库索引
B-树 1 .B-树定义 B-树是一种平衡的多路查找树,它在文件系统中很有用. 定义:一棵m 阶的B-树,或者为空树,或为满足下列特性的m 叉树: ⑴树中每个结点至多有m 棵子树: ⑵若根结点不是叶子 ...
- 数据结构 B-树和B+树的应用:数据搜索和数据库索引
B-树 1 .B-树定义 B-树是一种平衡的多路查找树,它在文件系统中很有用. 定义:一棵m 阶的B-树,或者为空树,或为满足下列特性的m 叉树:⑴树中每个结点至多有m 棵子树:⑵若根结点不是叶子结点 ...
- B-树和B+树的应用:数据搜索和数据库索引
B-树和B+树的应用:数据搜索和数据库索引 B-树 1 .B-树定义 B-树是一种平衡的多路查找树,它在文件系统中很有用. 定义:一棵m 阶的B-树,或者为空树,或为满足下列特性的m 叉树:⑴树中每 ...
- (转)B-树和B+树的应用:数据搜索和数据库索引
B-树 1 .B-树定义 B-树是一种平衡的多路查找树,它在文件系统中很有用. 定义:一棵m 阶的B-树,或者为空树,或为满足下列特性的m 叉树: ⑴树中每个结点至多有m 棵子树: ⑵若根结点不是叶子 ...
- 为什么MySQL数据库索引选择使用B+树?
在进一步分析为什么MySQL数据库索引选择使用B+树之前,我相信很多小伙伴对数据结构中的树还是有些许模糊的,因此我们由浅入深一步步探讨树的演进过程,在一步步引出B树以及为什么MySQL数据库索引选择使 ...
随机推荐
- poj-1459(网络流-最大流)
题意:给你n个点的电网系统,有一些点是电站,能提供p的电能,有些点是用户,能消耗c的电能,有些是过渡站,不消耗不产生(等于没用),然后m条电线(x,y,w),代表x可以向y运输w的电能,问你这个电网系 ...
- hdu1839(最小生成树)
题意:字面意思: 思路:就是多了一个前提,有些点之间可能有边,有两个处理方法,一个是有边的,这条边权值归零,另一个是,先一次循环用并查集过一遍: 代码:(用的是第一种方法) #include<i ...
- Modeling Filters and Whitening Filters
Colored and White Process White Process White Process,又称为White Noise(白噪声),其中white来源于白光,寓意着PSD的平坦分布,w ...
- FFmpeg 将YUV数据转RGB
只要开始初始化一次,结束后释放就好,中间可以循环转码 AVFrame *m_pFrameRGB,*m_pFrameYUV; uint8_t *m_rgbBuffer,*m_yuvBuffer; str ...
- CSS知识点总结[部分]
css是英文Cascading Style Sheets的缩写,称为层叠样式表,用于对页面进行美化. 存在方式有三种:元素内联.页面嵌入和外部引入,比较三种方式的优缺点. 注释为 /* 注释内容 */ ...
- kubernetes 编排详解 挂载
##kube挂载本地磁盘apiVersion: v1 kind: Pod metadata: name: redis spec: containers: - name: redis image: re ...
- Java WEB 乱码解决大全
来自 http://ligure.iteye.com/blog/ 中文乱码:在以后学习过程中全部采用UTF-8 1.文件的乱码 1.1.项目文本文件默认编码: [右击项目]->[P ...
- VM下安装Kali虚拟机
VM下Kali虚拟机安装 下载kali Linux系统镜像 下载地址:http://mirrors.hust.edu.cn/kali-images/ 网页如下: kali官网:http://www.k ...
- MT【277】华中科技大学理科实验班选拔之三次方程
(2015华中科技大学理科实验班选拔)已知三次方程$x^3+ax^2+bx+x=0$有三个实数根.(1)若三个实根为$x_1,x_2,x_3$,且$x_1\le x_2\le x_3,a,b$为常数, ...
- MT【265】a+b,ab
已知$a+b=1$,求$(a^3+1)(b^3+1)$的最大值_____ $(a^3+1)(b^3+1)=a^3+b^3+a^3+b^3+1$ $=(a+b)^3(a^2+b^2-ab)+a^3b^3 ...