Descroption

原题链接给你一棵\(~n~\)个点的树和\(~m~\)条链,求两两相交的链有多少对,两条链相交当且仅当有至少一个公共点。\(~1 \leq n, m \leq 10 ^ 5~\).

Solution

一个很直观的想法是把每一条链路径上的权值\(+1\),然后计算每一条链内多出来的权值为多少,显然这样是错的,因为两条链的交集可能不止有一个点,那么可以把每一条链路径上的点权\(+1\),边权\(-1\),再算多出来多少就好了。然而我不会这个啊。

考虑一个性质:

两条链相交当且仅当一条链的\(LCA\)在另一条链上

至于怎么证明,可以画图推推反例发现找不到,为了方便,设两条链为\(C1,C2\),若\(~LCA_{C1}~\)不在\(~C2~\)内,可以有两种情况:\(~①~\)\(C1~\)和\(C2~\)没有交集.\(~②~\)\(LCA_{C2}~\)在\(~C1~\)上. 这基于树上结点的父亲的唯一性。于是就把每一条链的\(~LCA~\)的权值\(+1\),最后统计每一条链内权值和就好了,注意减去重复的情况。

Code

#include <bits/stdc++.h>
#define For(i, j, k) for (int i = j; i <= k; ++i)
#define Travel(i, u) for (int i = beg[u], v = to[i]; i; v = to[i = nex[i]])
using namespace std; inline int read() {
int x = 0, p = 1; char c = getchar();
for (; !isdigit(c); c = getchar()) if(c == '-') p = -1;
for (; isdigit(c); c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48);
return x * p;
} inline void File() {
freopen("P1167.in", "r", stdin);
freopen("P1167.out", "w", stdout);
} typedef long long ll;
const int N = 1e5 + 10;
int e = 1, beg[N], nex[N << 1], to[N << 1], u, v, tmp[N];
int dep[N], dfn[N], top[N], fa[N], son[N], n, m, siz[N]; struct BIT {
int c[N];
inline void update(int x, int v) { for (; x <= n; x += x & -x) c[x] += v; }
inline int query(int x) { int res = 0; for (; x; x -= x & -x) res += c[x]; return res; }
inline int query(int l, int r) { return query(r) - query(l - 1);}
} T; inline void add(int x, int y) {
to[++ e] = y, nex[e] = beg[x], beg[x] = e;
to[++ e] = x, nex[e] = beg[y], beg[y] = e;
} inline void dfs1(int u, int f = 0) {
dep[u] = dep[fa[u] = f] + 1, siz[u] = 1;
Travel(i, u) if (v ^ f) {
dfs1(v, u), siz[u] += siz[v];
if (siz[v] > siz[son[u]]) son[u] = v;
}
} int clk = 0;
inline void dfs2(int u) {
dfn[u] = ++ clk, top[u] = son[fa[u]] == u ? top[fa[u]] : u;
if (son[u]) dfs2(son[u]);
Travel(i, u) if (v ^ fa[u] && v ^ son[u]) dfs2(v);
} inline int lca(int x, int y, int ty) {
int res = 0;
while (top[x] != top[y]) {
if (dep[top[x]] < dep[top[y]]) swap(x, y);
res += T.query(dfn[top[x]], dfn[x]), x = fa[top[x]];
}
if (dep[x] < dep[y]) swap(x, y);
return ty ? res + T.query(dfn[y], dfn[x]) : y;
} struct Chain { int x, y, lca; } P[N]; int main() {
File(); n = read(), m = read();
For(i, 2, n) u = read(), v = read(), add(u, v);
dfs1(1), dfs2(1); For(i, 1, m) {
P[i].x = read(), P[i].y = read();
++ tmp[P[i].lca = lca(P[i].x, P[i].y, 0)];
T.update(dfn[P[i].lca], 1);
} ll ans = 0;
For(i, 1, m) ans += lca(P[i].x, P[i].y, 1) - 1;
For(i, 1, n) ans -= 1ll * tmp[i] * (tmp[i] - 1) >> 1ll; cout << ans << endl;
return 0;
}

【hihocoder1167】高等理论计算机科学 (重链剖分 +树状数组)的更多相关文章

  1. Aragorn's Story 树链剖分+线段树 && 树链剖分+树状数组

    Aragorn's Story 来源:http://www.fjutacm.com/Problem.jsp?pid=2710来源:http://acm.hdu.edu.cn/showproblem.p ...

  2. 4.12 省选模拟赛 LCA on tree 树链剖分 树状数组 分析答案变化量

    LINK:duoxiao OJ LCA on Tree 题目: 一道树链剖分+树状数组的神题. (直接nQ的暴力有50. 其实对于树随机的时候不难想到一个算法 对于x的修改 暴力修改到根. 对于儿子的 ...

  3. hdu 3966 Aragorn's Story(树链剖分+树状数组/线段树)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3966 题意: 给出一棵树,并给定各个点权的值,然后有3种操作: I C1 C2 K: 把C1与C2的路 ...

  4. HDU 3966 /// 树链剖分+树状数组

    题意: http://acm.hdu.edu.cn/showproblem.php?pid=3966 给一棵树,并给定各个点权的值,然后有3种操作: I x y z : 把x到y的路径上的所有点权值加 ...

  5. HDU 3966 Aragorn's Story 树链剖分+树状数组 或 树链剖分+线段树

    HDU 3966 Aragorn's Story 先把树剖成链,然后用树状数组维护: 讲真,研究了好久,还是没明白 树状数组这样实现"区间更新+单点查询"的原理... 神奇... ...

  6. bzoj1146整体二分+树链剖分+树状数组

    其实也没啥好说的 用树状数组可以O(logn)的查询 套一层整体二分就可以做到O(nlngn) 最后用树链剖分让序列上树 #include<cstdio> #include<cstr ...

  7. HDU 5044 (树链剖分+树状数组+点/边改查)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5044 题目大意:修改链上点,修改链上的边.查询所有点,查询所有边. 解题思路: 2014上海网赛的变 ...

  8. BZOJ 2758 Blinker的噩梦(扫描线+熟练剖分+树状数组)

    题目链接:http://www.lydsy.com:808/JudgeOnline/problem.php?id=2758 题意:平面上有n个多边形(凸包和圆).任意两个多边形AB只有两种关系:(1) ...

  9. hdu 3966 Aragorn&#39;s Story(树链剖分+树状数组)

    pid=3966" target="_blank" style="">题目链接:hdu 3966 Aragorn's Story 题目大意:给定 ...

随机推荐

  1. 动态规划-LCS最长公共子序列

    #include<iostream> #include<cstdio> #include<cstring> #include<string> using ...

  2. UnderWater+SDN论文之二

    ---- Software-defined underwater acoustic networking platform and its applications source: Ad Hoc Ne ...

  3. group by用法

    select * from Table group by id,一定不能是*,而是某一个列或者某个列的聚合函数. 参考:http://www.cnblogs.com/jingfengling/p/59 ...

  4. CentOS 7从Python 2.7升级至Python3.6.1

    引言: CentOS是目前最为流行的Linux服务器系统,其默认的Python 2.x,但是根据python社区的规划,在不久之后,整个社区将向Python3迁移,且将不在支持Python2, 那该如 ...

  5. 关于 pip安装的可能错误的排除

    今天安装selenium总是报错(下为错误信息) C:\Python27\Scripts>pip install seleniumCollecting seleniumC:\Python27\l ...

  6. 第一部分之简单字符串SDS(第二章)

    一,什么是SDS? 1.引出SDSC字符串:c语言中,用空字符结尾的字符数组表示字符串简单动态字符串(SDS):Redis中,用SDS来表示字符串.在Redis中,包含字符串值的键值对在底层都是由SD ...

  7. 【学习总结】GirlsInAI ML-diary day-16-pip install XX

    [学习总结]GirlsInAI ML-diary 总 原博github链接-day16 Pip pip是python 著名的包管理工具,在python开发过程必不可少. 本节带大家了解用pip实现的p ...

  8. [转帖]windows7/windows NT介绍

    windows7/windows NT介绍 原文应该是IT168发布的 但是一直没找到 感觉看了之后 明白了很多 技术都是互相融合的 没有严格意义上的对立直说.   Windows 7/Windows ...

  9. js怎么能取得多选下拉框选中的多个值?

    方法:获取多选下拉框对象数组→循环判断option选项的selected属性(true为选中,false为未选中)→使用value属性取出选中项的值.实例演示如下: 1.HTML结构 1 2 3 4 ...

  10. 谈谈B-树和B+树及其应用

    待更!!! B-树和B+树的应用:数据搜索和数据库索引 B+/-Tree原理及mysql的索引分析 从B树.B+树.B*树谈到R 树 B树.B-树.B+树.B*树