hihocoder 1627

The 2017 ACM-ICPC Asia Beijing Regional Contest 北京区域赛 B、K-Dimensional Foil

题意

给定N个点的前3维左边,和他们的欧几里得距离,求至少多少维,才能满足这个距离。

题解

施密特正交化可证明如果有解则存在下三角矩阵的解。距离平方和先减去前3维的距离平方和,这样就相当于去掉了3维。然后依次考虑每个点,看当前维度能不能满足答案,不能则加一维,再根据距离确定新加一维的值。

代码

#include <bits/stdc++.h>
using namespace std;
#define mem(a,b) memset(a,b,sizeof(a))
#define rep(i,l,r) for(int i=l,ed=r;i<ed;++i)
#define db(x) cout<< #x <<"="<<(x)<<endl
#define sqr(x) ((x)*(x)) typedef long long ll;
typedef long double dd;
const dd EPS=1e-10;
const int N=110;
int n,t;
dd a[N][N];//position of i_th point in j_th dimension
dd d[N][N];//remain distance between i_th and j_th point
int num[N];//k_th dimension first appears on num[k]_th point
dd calc(int i,int j,int dim){//distance between j_th point and i_th point (dimension 0~dim)
dd sum=0;
rep(k,0,dim+1)
sum+=sqr(a[j][k]-a[i][k]);
return sum;
}
bool solve(){
cin>>n;
rep(i,0,n)
rep(j,0,3)
cin>>a[i][j];
int flag=0;
rep(i,0,n)
rep(j,i+1,n){
cin>>d[i][j];
rep(k,0,3)d[i][j]-=sqr(a[i][k]-a[j][k]);
if(d[i][j]<-EPS){
flag=1;
}
d[j][i]=d[i][j];
}
if(flag)return 0;
mem(a,0);
mem(num,0);
int k=0;
rep(i,1,n){
dd dis0=d[i][0];
rep(j,0,k){
if(a[num[j]][j]>EPS)
a[i][j]=(calc(i,num[j],k)-calc(i,0,k)+d[i][0]-d[i][num[j]])/2./a[num[j]][j];
dis0-=sqr(a[i][j]);
if(dis0<-EPS)return 0;
}
if(dis0>EPS){
a[num[k]=i][k]=sqrt(dis0);
k++;
}
rep(j,0,i)
if(fabs(calc(i,j,k)-d[i][j])>EPS)return 0;
}
// rep(i,0,n)
// rep(j,0,k){
// cout<<a[i][j]<<(" \n"[j==k-1]);
// }
cout<<k+3<<endl;
return 1;
}
int main(){
ios::sync_with_stdio(false);
cin>>t;
while(t--){
if(!solve())cout<<"Goodbye World!"<<endl;
}
return 0;
}

【hihocoder 1628】K-Dimensional Foil(线性代数)的更多相关文章

  1. hihocoder#1046 K个串 可持久化线段树 + 堆

    首先考虑二分,然后发现不可行.... 注意到\(k\)十分小,尝试从这里突破 首先用扫描线来处理出以每个节点为右端点的区间的权值和,用可持久化线段树存下来 在所有的右端点相同的区间中,挑一个权值最大的 ...

  2. hihocoder#1046: K个串

    [传送门] 这种区间内相同数字只能被统计一次/只有区间内数字都不相同才对答案有贡献的题都可以用扫描线扫右端点,表示当前区间右端点为$r$.然后当前线段树/树状数组维护区间左端点为$[1,r)$时对应的 ...

  3. [Machine Learning] logistic函数和softmax函数

    简单总结一下机器学习最常见的两个函数,一个是logistic函数,另一个是softmax函数,若有不足之处,希望大家可以帮忙指正.本文首先分别介绍logistic函数和softmax函数的定义和应用, ...

  4. K-D Tree

    这篇随笔是对Wikipedia上k-d tree词条的摘录, 我认为解释得相当生动详细, 是一篇不可多得的好文. Overview A \(k\)-d tree (short for \(k\)-di ...

  5. KNN及其改进算法的python实现

    一. 马氏距离 我们熟悉的欧氏距离虽然很有用,但也有明显的缺点.它将样品的不同属性(即各指标或各变量)之间的差别等同看待,这一点有时不能满足实际要求.例如,在教育研究中,经常遇到对人的分析和判别,个体 ...

  6. Spark:聚类算法之LDA主题模型算法

    http://blog.csdn.net/pipisorry/article/details/52912179 Spark上实现LDA原理 LDA主题模型算法 [主题模型TopicModel:隐含狄利 ...

  7. GWAS | 全基因组关联分析 | Linkage disequilibrium (LD)连锁不平衡 | 曼哈顿图 Manhattan_plot | QQ_plot | haplotype phasing

    现在GWAS已经属于比较古老的技术了,主要是碰到严重的瓶颈了,单纯的snp与表现的关联已经不够,需要具体的生物学解释,这些snp是如何具体导致疾病的发生的. 而且,大多数病找到的都不是个别显著的snp ...

  8. 【论文笔记】Social Role-Aware Emotion Contagion in Image Social Networks

    Social Role-Aware Emotion Contagion in Image Social Networks 社会角色意识情绪在形象社交网络中的传染 1.摘要: 心理学理论认为,情绪代表了 ...

  9. Spark2.0机器学习系列之1: 聚类算法(LDA)

    在Spark2.0版本中(不是基于RDD API的MLlib),共有四种聚类方法:      (1)K-means      (2)Latent Dirichlet allocation (LDA)  ...

随机推荐

  1. 利用tushare进行对兴业银行股价的爬取,并使用numpy进行分析

    import sysimport tushare as tsimport numpy as npdata=ts.get_h_data('601066')print(data)#读出兴业银行7列数据da ...

  2. iOS开发 横向分页样式 可左右滑动或点击头部栏按钮进行页面切换

    iOS开发 横向分页样式 可左右滑动或点击头部栏按钮进行页面切换 不多说直接上效果图和代码 1.设置RootViewController为一个导航试图控制器 //  Copyright © 2016年 ...

  3. Solrcloud(Solr集群)

    Solrcloud(Solr集群) Solrcloud介绍: SolrCloud(solr集群)是Solr提供的分布式搜索方案. 当你需要大规模,容错,分布式索引和检索能力时使用SolrCloud. ...

  4. Python之操作MySQL数据库

      一.操作步骤 1.导入pymysql模块 2.建立连接(ip.用户名.密码.数据库名.端口号.字符集.(自动提交参数)) 3.建立游标 4.执行sql语句 (4.需要提交的提交) 5.关闭游标 6 ...

  5. node笔记

    基础入门可参考: <一起学 Node.js>—— https://github.com/nswbmw/N-blog 核心模块使用前需要引入   let fs=require('fs'); ...

  6. 基于CRM跟进(活动)记录中关键字识别的客户跟进加权值的成单概率算法

    1.提取销售人员的跟进记录,分析其中的骂人文字(负面情绪),将有负面情绪的客户的跟进排期,进行降权(权重)操作.重点跟进加权值较高的客户. 执行办法: 将销售与客户沟通的语音:电话,微信,QQ,通过调 ...

  7. 了解真实的rem手机屏幕适配

    rem 作为一个低调的长度单位,由于手机端网页的兴起,在屏幕适配中得到重用.使用 rem 前端开发者可以很方便的在各种屏幕尺寸下,通过等比缩放的方式达到设计图要求的效果. rem 的官方定义『The ...

  8. [转帖]LCD与LED的区别之背光原理与优缺点对比介绍

    LCD与LED的区别之背光原理与优缺点对比介绍 http://m.elecfans.com/article/620376.html 时下液晶面板与液晶电视技术已经达到炉火纯青的境界,并已经成为大屏幕平 ...

  9. [转帖]IP /TCP协议及握手过程和数据包格式中级详解

    IP /TCP协议及握手过程和数据包格式中级详解 https://www.toutiao.com/a6665292902458982926/ 写的挺好的 其实 一直没闹明白 网络好 广播地址 还有 网 ...

  10. Docker安装部署redis

    借鉴博客:https://my.oschina.net/u/3489495/blog/1825335 待续... >>>>>>>>>docker安 ...