最短路径之Bellman-Ford算法
第一行为源点个数,边的个数m
接下来m行为a->b和权值
5 5
2 3 2
1 2 -3
1 5 5
4 5 2
3 4 3
Bellman-Ford算法(1):
#include<iostream>
#include<cstdio>
#include<algorithm>
#define inf 1000000000
using namespace std;
int main()
{
int dis[], u[], v[], w[];
int n, m;
cin >> n >> m;
for (int i = ; i <= m; i++)
cin >> u[i] >> v[i] >> w[i];
for (int i = ; i <= n; i++)
dis[i] = inf;
dis[] = ;
for (int k = ; k < n; k++)
for (int i = ; i <= m; i++)
dis[v[i]] = min(dis[v[i]], dis[u[i]] + w[i]);
for (int i = ; i <= n; i++)
cout << dis[i] << " ";
return ;
}
(2)
#include<iostream>
#include<queue>
#include<algorithm>
using namespace std;
#define inf 1000000000
struct edge
{
int from, to, cost;
};
edge es[];
int d[], V, E;
void path(int s)
{
for (int i = ; i <= V; i++) d[i] = inf;
d[s] = ;
while (true)
{
bool update = false;
for (int i = ; i < E; i++)
{
edge e = es[i];
if (d[e.from] != inf&& d[e.to]>d[e.from] + e.cost)
{
d[e.to] = d[e.from] + e.cost;
update = true;
}
}
if (!update) break;
}
for (int i = ; i <= V; i++)
cout << d[i] << " ";
}
int main()
{
cin >> V >> E;
for (int i = ; i < E; i++)
{
cin >> es[i].from >> es[i].to >> es[i].cost;
}
path();
return ;
}
最短路径之Bellman-Ford算法的更多相关文章
- Bellman - Ford 算法解决最短路径问题
Bellman - Ford 算法: 一:基本算法 对于单源最短路径问题,上一篇文章中介绍了 Dijkstra 算法,但是由于 Dijkstra 算法局限于解决非负权的最短路径问题,对于带负权的图就力 ...
- Bellman—Ford算法思想
---恢复内容开始--- Bellman—Ford算法能在更普遍的情况下(存在负权边)解决单源点最短路径问题.对于给定的带权(有向或无向)图G=(V,E),其源点为s,加权函数w是边集E的映射.对图G ...
- Dijkstra算法与Bellman - Ford算法示例(源自网上大牛的博客)【图论】
题意:题目大意:有N个点,给出从a点到b点的距离,当然a和b是互相可以抵达的,问从1到n的最短距离 poj2387 Description Bessie is out in the field and ...
- poj1860 bellman—ford队列优化 Currency Exchange
Currency Exchange Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 22123 Accepted: 799 ...
- uva 558 - Wormholes(Bellman Ford判断负环)
题目链接:558 - Wormholes 题目大意:给出n和m,表示有n个点,然后给出m条边,然后判断给出的有向图中是否存在负环. 解题思路:利用Bellman Ford算法,若进行第n次松弛时,还能 ...
- 数据结构与算法--最短路径之Bellman算法、SPFA算法
数据结构与算法--最短路径之Bellman算法.SPFA算法 除了Floyd算法,另外一个使用广泛且可以处理负权边的是Bellman-Ford算法. Bellman-Ford算法 假设某个图有V个顶点 ...
- 求最短路径的三种算法: Ford, Dijkstra和Floyd
Bellman-Ford算法 Bellman-Ford是一种容易理解的单源最短路径算法, Bellman-Ford算法需要两个数组进行辅助: dis[i]: 存储顶点i到源点已知最短路径 path[i ...
- ACM/ICPC 之 最短路径-Bellman Ford范例(POJ1556-POJ2240)
两道Bellman Ford解最短路的范例,Bellman Ford只是一种最短路的方法,两道都可以用dijkstra, SPFA做. Bellman Ford解法是将每条边遍历一次,遍历一次所有边可 ...
- JS实现最短路径之弗洛伊德(Floyd)算法
弗洛伊德算法是实现最小生成树的一个很精妙的算法,也是求所有顶点至所有顶点的最短路径问题的不二之选.时间复杂度为O(n3),n为顶点数. 精妙之处在于:一个二重初始化,加一个三重循环权值修正,完成了所有 ...
- 最短路径问题的Dijkstra算法
问题 最短路径问题的Dijkstra算法 是由荷兰计算机科学家艾兹赫尔·戴克斯特拉提出.迪科斯彻算法使用了广度优先搜索解决非负权有向图的单源最短路径问题,算法终于得到一个最短路径树> ...
随机推荐
- 洛谷P1494 【[国家集训队]小Z的袜子】
纪念自己独立完成的一道省选题(菜鸡如我只会看题解qwq) 还算是一道比较裸的莫队题把,比有的题目简单很多,也很好想怎么O(1)转移,比别的题就多了一个组合数计算(还有gcd??),还没算%意义下,也是 ...
- Rem自适应js---flexible.min.js
网上看到很多移动端适配的各种方法,由于原来工作中对rem的疏忽,所以决定重新学习rem~ 由于移动端特殊性,本文讲的是如何使用rem实现自适应,或叫rem响应式布局,通过使用一个脚本就可以rem自适应 ...
- 事件代理on
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- js判断浏览器类型和版本
原网址:http://www.cnblogs.com/rubylouvre/archive/2009/10/14/1583362.html 除了另无它法,肯定不使用navigator.userAgen ...
- android Notification总结
在发送一个Notification前,我们需要准备好一个NotificationManager NotificationManager manager = (NotificationManager) ...
- synchronized底层实现原理&CAS操作&偏向锁、轻量级锁,重量级锁、自旋锁、自适应自旋锁、锁消除、锁粗化
进入时:monitorenter 每个对象有一个监视器锁(monitor).当monitor被占用时就会处于锁定状态,线程执行monitorenter指令时尝试获取monitor的所有权,过程如下:1 ...
- 【转】Git超实用总结,再也不怕记忆力不好了
[转]Git超实用总结,再也不怕记忆力不好了 欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 本文由腾讯工蜂发表于云+社区专栏 Git 是什么? Git 是一个分布式的代码管理容器,本地和 ...
- DeprecationWarning: Calling an asynchronous function without callback is deprecated. - how to find where the “function:” is?
I recently updated my node to 7.2.1 and noticed that there is a warning coming: (node:4346) Deprecat ...
- C/C++中可变参数函数的实现
在C语言的stdarg.h头文件中提供了三个函数va_start, va_end,va_arg和一个类型va_list.利用它们,我们可以很容易实现一个可变参数的函数.首先简单介绍一下这三个函数. 假 ...
- Android App签名打包
Andriod应用程序如果要在手机或模拟器上安装,必须要有签名! 1.签名的意义 为了保证每个应用程序开发商合法ID,防止部分开放商可能通过使用相同的Package Name来混淆替换已经安装的程序 ...