找了半天错发现m有可能是1.。

/*
如果n是奇数,就进行(n/2)次转移,然后取F[2],反之取F[1]
*/
#include<bits/stdc++.h>
using namespace std;
#define ll long long
ll n,m,F[];
struct Mat{
ll m[][];
Mat(){memset(m,,sizeof m);}
};
void mul1(ll F[],Mat A){
ll C[]={};
for(int j=;j<;j++)
for(int i=;i<;i++)
C[j]=(C[j]+F[i]*A.m[i][j]%m)%m;
memcpy(F,C,sizeof C);
}
void mul2(Mat & A,Mat B){
Mat C;
for(int i=;i<;i++)
for(int j=;j<;j++)
for(int k=;k<;k++)
C.m[i][j]=(C.m[i][j]+A.m[i][k]*B.m[k][j]%m)%m;
memcpy(A.m,C.m,sizeof C.m);
}
int main(){
while(cin>>n>>m){
memset(F,,sizeof F);
F[]=,F[]=,F[]=;
Mat A;
A.m[][]=A.m[][]=;
A.m[][]=,A.m[][]=; if(n==){
cout<<%m<<endl;
continue;
} int flag=n%;
n/=;
while(n){
if(n%)
mul1(F,A);
mul2(A,A);
n>>=;
}
cout<<F[+flag]%m<<endl;
}
}

hdu4990 转移矩阵的更多相关文章

  1. hdu5015构造转移矩阵

    /* 构造转移矩阵: 先推公式: 首先是第0行:A[0][j+1]=A[0][j]*10+3 1-n行: A[i][j+1]=A[i][j]+A[i-1][j+1]=... =A[i][j]+A[i- ...

  2. bzoj2973转移矩阵构造法!

    /* 构造单位矩阵(转移矩阵) 给定n*m网格,每个格子独立按照长度不超过6的操作串循环操作 对应的操作有 0-9:拿x个石头到这个格子 nwse:把这个格子的石头推移到相邻格子 d:清空该格石子 开 ...

  3. [动态dp]线段树维护转移矩阵

    背景:czy上课讲了新知识,从未见到过,总结一下. 所谓动态dp,是在动态规划的基础上,需要维护一些修改操作的算法. 这类题目分为如下三个步骤:(都是对于常系数齐次递推问题) 1先不考虑修改,不考虑区 ...

  4. Page5:状态转移矩阵及性质、连续线性系统离散化及其性质[Linear System Theory]

    内容包含脉冲响应矩阵和传递函数矩阵之间的关系,状态转移矩阵及性质,以及线性连续系统离散化及其性质

  5. hdu4990矩阵快速幂

    就是优化一段代码,用矩阵快速幂(刚开始想到了转移矩阵以为是错的) 在搜题解时发现了一个神奇的网站:http://oeis.org/ 用来找数列规律 的神器.... 规律就是an=an-1+2*an-2 ...

  6. bzoj-1009-dp+kmp处理转移矩阵幂

    1009: [HNOI2008]GT考试 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 4723  Solved: 2940[Submit][Statu ...

  7. HDU4990 Reading comprehension —— 递推、矩阵快速幂

    题目链接:https://vjudge.net/problem/HDU-4990 Reading comprehension Time Limit: 2000/1000 MS (Java/Others ...

  8. NLP --- 条件随机场CRF详解 重点 特征函数 转移矩阵

    上一节我们介绍了CRF的背景,本节开始进入CRF的正式的定义,简单来说条件随机场就是定义在隐马尔科夫过程的无向图模型,外加可观测符号X,这个X是整个可观测向量.而我们前面学习的HMM算法,默认可观测符 ...

  9. hdu4990 矩阵

    C - Reading comprehension Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & ...

随机推荐

  1. 关于Scroller的使用

    这篇文章讲解的很详细 https://blog.csdn.net/u011102153/article/details/53337648

  2. 列式数据库~clickhouse日常管理

    clickhouse日常管理一 变量相关  1 查看变量     system.setting相关表  2 设置变量     set variables= 请注意这里是session级别,如果想永久生 ...

  3. 自动安装gulpfile中所有依赖的模块

    在gulpfile.js中定义任务的时候,需要引用不同的模块,这些模块需要使用 npm install --save-dev 命令进行安装,非常的繁琐.可以使用一个名为gulpfile-install ...

  4. 求两个排序数组中位数 C++

    题目描述: 给定两个大小为 m 和 n 的有序数组 nums1 和 nums2 . 请找出这两个有序数组的中位数.要求算法的时间复杂度为 O(log (m+n)) . 你可以假设 nums1 和 nu ...

  5. oracle坏块问题的处理

    一.背景 今天有用户反映数据库连不上了,查看日志发现有数据库坏块. 查看数据库日志,有如下报错: ORA-01578: ORACLE , 93642) ORA-01110: 1: '/oracle/a ...

  6. P1456 Monkey King

    题目地址:P1456 Monkey King 一道挺模板的左偏树题 不会左偏树?看论文打模板,完了之后再回来吧 然后你发现看完论文打完模板之后就可以A掉这道题不用回来了 细节见代码 #include ...

  7. CF1096E The Top Scorer

    题目地址:洛谷CF1096E 本场AC数最少 (最难) 的题目 题目大意:给出三个数p , s,r,表示有p人,每个人都有一个非负得分,所有人的得分和为s,Hasan的得分至少为r,求Hasan是第一 ...

  8. CentOS7开启防火墙及特定端口

    开启防火墙服务 以前为了方便,把防火墙都关闭了,因为现在项目都比较重要,害怕受到攻击,所以为了安全性,现在需要将防火墙开启,接下来介绍一下步骤. 1, 首先查看防火墙状态: firewall-cmd ...

  9. 待解决close

    关于close语句放在哪里,貌似会对结果产生影响 #include <iostream> #include <fstream> using namespace std; int ...

  10. Redis(转)

    传统MySQL+ Memcached架构遇到的问题 实际MySQL是适合进行海量数据存储的,通过Memcached将热点数据加载到cache,加速访问,很多公司都曾经使用过这样的架构,但随着业务数据量 ...