AHOI2013 差异 【后缀数组】
题目分析:
求出height以后很明显跨越最小height的一定贡献是最小height,所以对于区间找出最小height再将区间对半分。
代码:
#include<bits/stdc++.h>
using namespace std; const int maxn = ;
const int N = ; int n;
char str[maxn]; int sa[maxn],rk[maxn],X[maxn],Y[maxn];
int height[maxn],h[maxn],RMQ[maxn][],pos[maxn][]; int chk(int x,int k){
return rk[sa[x]]==rk[sa[x-]]&&rk[sa[x]+(<<k)]==rk[sa[x-]+(<<k)];
} void getsa(){
for(int i=;i<n;i++) X[str[i]]++;
for(int i=;i<=N;i++) X[i] += X[i-];
for(int i=n-;i>=;i--) sa[X[str[i]]--] = i;
for(int i = , num = ;i <= n;i++)
rk[sa[i]] = (str[sa[i]] == str[sa[i-]]?num:++num);
rk[sa[]] = ;
for(int k=;(<<k-)<=n;k++){
for(int i=;i<=N;i++) X[i] = ;
for(int i=n-(<<k-);i<n;i++) Y[i-n+(<<k-)+]=i;
for(int i=,j=(<<k-)+;i<=n;i++)
if(sa[i]>=(<<k-))Y[j++]=sa[i]-(<<k-);
for(int i=;i<n;i++) X[rk[i]]++;
for(int i=;i<=N;i++) X[i]+=X[i-];
for(int i=n;i>=;i--) sa[X[rk[Y[i]]]--] = Y[i];
int num = ; Y[sa[]] = ;
for(int i=;i<=n;i++) Y[sa[i]] = (chk(i,k-)?num:++num);
for(int i=;i<n;i++) rk[i] = Y[i];
if(num == n) break;
}
}
void getheight(){
for(int i=;i<n;i++){
if(i) h[i] = max(,h[i-]-); else h[i] = ;
if(rk[i] == ) continue;
int comp = sa[rk[i]-];
while(str[comp+h[i]] == str[i+h[i]])h[i]++;
}
for(int i=;i<n;i++) height[rk[i]] = h[i];
for(int i=;i<=n;i++) RMQ[i][] = height[i],pos[i][] = i;
for(int k=;(<<k)<=n;k++){
for(int i=;i<=n;i++){
if(i+(<<k-)>n) RMQ[i][k]=RMQ[i][k-],pos[i][k]=pos[i][k-];
else {
if(RMQ[i][k-]<RMQ[i+(<<k-)][k-]) pos[i][k] = pos[i][k-];
else pos[i][k] = pos[i+(<<k-)][k-];
RMQ[i][k] = min(RMQ[i][k-],RMQ[i+(<<k-)][k-]);
}
}
}
}
int getLCP(int L,int R){
if(L > R) swap(L,R);
if(L == R) return n-sa[L];
L++;
int k = ; while((<<k+)<=R-L+)k++;
if(RMQ[L][k]<RMQ[R-(<<k)+][k]) return pos[L][k];
else return pos[R-(<<k)+][k];
} long long ans = ; void divide(int l,int r){
if(l == r) return;
int ps = getLCP(l,r);
ans -= 2ll*(ps-l)*(r-ps+)*height[ps];
divide(l,ps-); divide(ps,r);
} void work(){
n = strlen(str);
getsa();
getheight();
for(int i=;i<=n;i++) ans += 1ll*i*i-i;
for(int i=;i<=n;i++) ans += 1ll*i*(n-i);
divide(,n);
printf("%lld\n",ans);
} int main(){
scanf("%s",str);
work();
return ;
}
AHOI2013 差异 【后缀数组】的更多相关文章
- bzoj 3238: [Ahoi2013]差异 -- 后缀数组
3238: [Ahoi2013]差异 Time Limit: 20 Sec Memory Limit: 512 MB Description Input 一行,一个字符串S Output 一行,一个 ...
- 【BZOJ3238】[Ahoi2013]差异 后缀数组+单调栈
[BZOJ3238][Ahoi2013]差异 Description Input 一行,一个字符串S Output 一行,一个整数,表示所求值 Sample Input cacao Sample Ou ...
- [AHOI2013] 差异 - 后缀数组,单调栈
[AHOI2013] 差异 Description 求 \(\sum {len(T_i) + len(T_j) - 2 lcp(T_i,T_j)}\) 的值 其中 \(T_i (i = 1,2,... ...
- BZOJ 3238: [Ahoi2013]差异 [后缀数组 单调栈]
3238: [Ahoi2013]差异 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 2326 Solved: 1054[Submit][Status ...
- bzoj3238 [Ahoi2013]差异 后缀数组+单调栈
[bzoj3238][Ahoi2013]差异 Description Input 一行,一个字符串S Output 一行,一个整数,表示所求值 Sample Input cacao Sample Ou ...
- [BZOJ3238][AHOI2013]差异(后缀数组)
求和式的前两项可以直接算,问题是对于每对i,j计算LCP. 一个比较显然的性质是,LCP(i,j)是h[rk[i]+1~rk[j]]中的最小值. 从h的每个元素角度考虑,就是对每个h计算有多少对i,j ...
- 【bzoj3238】差异[AHOI2013](后缀数组+单调栈)
题目传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=3238 这道题从大概半年以前就开始啃了,不过当时因为一些细节没调出来,看了Sakits神犇 ...
- 【BZOJ-3238】差异 后缀数组 + 单调栈
3238: [Ahoi2013]差异 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 1561 Solved: 734[Submit][Status] ...
- BZOJ 3238: [Ahoi2013]差异 [后缀自动机]
3238: [Ahoi2013]差异 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 2512 Solved: 1140[Submit][Status ...
- [Ahoi2013]差异(后缀自动机)
/* 前面的那一坨是可以O1计算的 后面那个显然后缀数组单调栈比较好写??? 两个后缀的lcp长度相当于他们在后缀树上的lca的深度 那么我们就能够反向用后缀自动机构造出后缀树然后统计每个点作为lca ...
随机推荐
- 深入理解Redis复制
复制 A few things to understand ASAP about Redis replication. 1) Redis replication is asynchronous, bu ...
- JSON Web Token 入门教程
原文地址:http://www.ruanyifeng.com/blog/2018/07/json_web_token-tutorial.html JSON Web Token(缩写 JWT)是目前最流 ...
- SQL Server(2000,2005,2008):恢复/回滚时间比预期长(译)
我已经讨论了各种确定恢复状态的方法,但是本周我参与了一个围绕回滚的有趣讨论.交易已经运行了14个小时,然后发出了KILL SPID.SPID进入回滚,并发生2天和4小时. 自然的问题是为什么不14小时 ...
- 便于记忆的SA构造
首先学习基数排序. memset(b, 0, sizeof(b)); for(int i = 0; i < n; i++) b[a[i]]++; for(int i = 1; i <= m ...
- Jenkins部署net core小记
作为一个不熟悉linux命令的neter,在centos下玩Jenkins真的是一种折磨啊,但是痛并快乐着,最后还是把demo部署成功!写这篇文章是为了记录一下这次部署的流程,和心得体会. 网上很多资 ...
- PT与PX区别
字体大小的设置单位,常用的有2种:px.pt.这两个有什么区别呢? 先搞清基本概念:px就是表示pixel,像素,是屏幕上显示数据的最基本的点: pt就是point,是印刷行业常用单位,等于1/72英 ...
- 多线程系列之八:Thread-Per-Message模式
一,Thread-Per-Message模式 翻译过来就是 每个消息一个线程.message可以理解为命令,请求.为每一个请求新分配一个线程,由这个线程来执行处理.Thread-Per-Message ...
- Satis搭建composer私有库(自定义下载目录)
在我们的日常php开发中需要使用大量的第三方包和类库, 怎么管理是一个问题, 我们用的Yii2框架, 但是并没有把composer用起来, 由于最近更换为docker部署项目, 于是想起来用compo ...
- 5 Expressing future time
1 英语中表达将来的时间有四种主要方式:be going to, will, 现在进行时,一般现在时. 2 Make a prediction. 若要预测将来, 可以使用 be going to 或者 ...
- kdump简单的介绍
kdump是2.6.16之后,内核引入的一种新的内核崩溃现场信息收集工具.当一个内核崩溃后(我们称之为panic),内核会使用kexec(类似于进程的exec,把当前内核换掉)进入到一个干净的备份内核 ...