传送门:>Here<

题意:给出一个长度为N的序列,求$Max\{ (a_i + a_j) ⊕ a_k \}$ (i,j,k均不相同)  ($N \leq 1000$)

解题思路

  既然$O(n^3)$不行,就考虑$O(n^2 \ log \ n)$的做法。

  网上说得很对,凡是和xor有关的80%都是Trie……

  将所有数的二进制建立Trie树,枚举$i,j$——此时在trie树中删去$a_i, a_j$,然后用上一篇文章的方法求得最大的异或。

  那么这道题的关键问题就在于如何删去$a_i, a_j$?每次重新建树显然又$O(n^3)$了(还不止)。

  考虑维护一个cnt数组,代表每个节点出现的次数。每一次删去的时候就像插入一样走一遍把对应节点的cnt减掉,然后在query的时候判定只能访问cnt>0的。这样很方便地处理好了问题

Code

  数组要清零

/*By DennyQi*/
#include <cstdio>
#include <queue>
#include <cstring>
#include <algorithm>
#define r read()
#define Max(a,b) (((a)>(b)) ? (a) : (b))
#define Min(a,b) (((a)<(b)) ? (a) : (b))
using namespace std;
typedef long long ll;
const int MAXN = ;
const int INF = ;
inline int read(){
int x = ; int w = ; register int c = getchar();
while(c ^ '-' && (c < '' || c > '')) c = getchar();
if(c == '-') w = -, c = getchar();
while(c >= '' && c <= '') x = (x << ) +(x << ) + c - '', c = getchar(); return x * w;
}
int T,N;
int a[],ch[MAXN][],cnt[MAXN],End[MAXN],num_node;
bool b[];
inline void Convert(int x){
memset(b, , sizeof(b));
for(int i = ; x > ; --i){
b[i] = x%;
x >>= ;
}
}
inline void Insert(int x){
Convert(x);
int u=;
for(int i = ; i <= ; ++i){
if(!ch[u][b[i]]){
ch[u][b[i]] = ++num_node;
}
u = ch[u][b[i]];
++cnt[u];
}
End[u] = x;
}
inline void Clear(int x){
Convert(x);
int u=;
for(int i = ; i <= ; ++i){
u = ch[u][b[i]];
--cnt[u];
}
}
inline void Add(int x){
Convert(x);
int u=;
for(int i = ; i <= ; ++i){
u = ch[u][b[i]];
++cnt[u];
}
}
inline int Query(int k){
Convert(k);
int u = ;
for(int i = ; i <= ; ++i){
if(!cnt[ch[u][!b[i]]]){
u = ch[u][b[i]];
}
else{
u = ch[u][!b[i]];
}
}
return (k^End[u]);
}
inline void Init(){
memset(ch,,sizeof(ch));
memset(cnt,,sizeof(cnt));
memset(End,,sizeof(End));
num_node = ;
}
int main(){
T=r;
while(T--){
Init();
N=r;
for(int i = ; i <= N; ++i){
a[i]=r;
Insert(a[i]);
}
int ans = -;
for(int i = ; i < N; ++i){
for(int j = i+; j <= N; ++j){
Clear(a[i]);
Clear(a[j]);
ans = Max(ans, Query(a[i]+a[j]));
Add(a[i]);
Add(a[j]);
}
}
printf("%d\n", ans);
}
return ;
}

[HDU5536] Chip Factory的更多相关文章

  1. hdu5536 Chip Factory 字典树+暴力 处理异或最大 令X=(a[i]+a[j])^a[k], i,j,k都不同。求最大的X。

    /** 题目:hdu5536 Chip Factory 链接:http://acm.hdu.edu.cn/showproblem.php?pid=5536 题意:给定n个数,令X=(a[i]+a[j] ...

  2. HDU-5536 Chip Factory,又见字典树,好题+1!

    Chip Factory 题意:一个n个数的数列,求三个数其中两个数的和与另外一个数的异或值最大,输出这个最大值. 思路:和前面那个百度之星资格赛HDU4825的类似,多了两个过程,一个是枚举和,另一 ...

  3. [HDU-5536] Chip Factory (01字典树)

    Problem Description John is a manager of a CPU chip factory, the factory produces lots of chips ever ...

  4. HDU-5536 Chip Factory (字典树)

    题目大意:给n个数,编号为1~n,取三个编号不同的数,使表达式(a+b)^c的值最大. 题目分析:将这n个数按二进制位建立一棵trie.枚举i.j的和,查询亦或最大值,但在查询之前要把i.j在trie ...

  5. 【01字典树】hdu-5536 Chip Factory

    [题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=5536 [题意] 求一个式子,给出一组数,其中拿出ai,aj,ak三个数,使得Max{ (ai+aj ...

  6. hdu5269 Chip Factory

    地址:http://acm.split.hdu.edu.cn/showproblem.php?pid=5536 题目: Chip Factory Time Limit: 18000/9000 MS ( ...

  7. 2015ACM/ICPC亚洲区长春站 J hdu 5536 Chip Factory

    Chip Factory Time Limit: 18000/9000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)T ...

  8. HDU 5536 Chip Factory 字典树

    Chip Factory Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid= ...

  9. HDU 5536 Chip Factory 字典树+贪心

    给你n个数,a1....an,求(ai+aj)^ak最大的值,i不等于j不等于k 思路:先建字典树,暴力i,j每次删除他们,然后贪心找k,再恢复i,j,每次和答案取较大的,就是答案,有关异或的貌似很多 ...

随机推荐

  1. 07 YAPI/基础设施 - DevOps之路

    07 YAPI/基础设施 - DevOps之路 文章Github地址,欢迎start:https://github.com/li-keli/DevOps-WiKi 简介 YApi 是一个可本地部署的. ...

  2. linux if -d -e -f表达的意思

    文件表达式-e filename 如果 filename存在,则为真-d filename 如果 filename为目录,则为真 -f filename 如果 filename为常规文件,则为真-L ...

  3. 避免使用HttpClient的系统代理

    这两天在玩Consul, 他的.Net驱动使用了HttpClient来发送Http请求. 但是我的电脑上装有SS, 所以请求会被SS过滤一次, 然后导致请求的延迟一直比较高. 然后只需要改写一下Htt ...

  4. mariadb(第一章)

      数据库介绍 1.什么是数据库? 简单的说,数据库就是一个存放数据的仓库,这个仓库是按照一定的数据结构(数据结构是指数据的组织形式或数据之间的联系)来组织,存储的,我们可以通过数据库提供的多种方法来 ...

  5. Spring Boot 中使用 @Transactional 注解配置事务管理

    事务管理是应用系统开发中必不可少的一部分.Spring 为事务管理提供了丰富的功能支持.Spring 事务管理分为编程式和声明式的两种方式.编程式事务指的是通过编码方式实现事务:声明式事务基于 AOP ...

  6. iOS 快速集成ijkplayer视频直播与录播框架

    最近由于需求的变动,项目内把最初最简单的原生直播框架变成了B站开源的ijkplayer框架,下面把具体的过程总结一下整个过程都比较简单,重要的是理解的过程,集成完毕之后,视频的用户体验比苹果原生好了很 ...

  7. 【转】实现Nginx代理WSS协议

    https://blog.csdn.net/chopin407/article/details/52937645 后来看到了官网的教程(http://nginx.org/en/docs/http/we ...

  8. linux系统下MySQL表名区分大小写问题

    linux系统下MySQL表名区分大小写问题 https://www.cnblogs.com/jun1019/p/7073227.html [mysqld] lower_case_table_name ...

  9. css3的clip-path方法剪裁实现

    本例讲解如何通过clip-path把一个div(元素,可以是图片等)裁切成不同的形状,这里以一个div为例宽高均为300px 注意:不支持IE和Firefox,支持webkit浏览器,在现代浏览器中需 ...

  10. 微信小程序自定义组件

    要做自定义组件,我们先定一个小目标,比如说我们在小程序中实现一下 WEUI 中的弹窗组件,基本效果图如下. Step1 我们初始化一个小程序(本示例基础版本库为 1.7 ),删掉里面的示例代码,并新建 ...