题目分析:

题解好高深......

我给一个辣鸡做法算了,题解真的看不懂。

注意到方差恒为$0$,那么其实就是要我们求$\sum_{i=0}^{n}\binom{n}{i}(i^k-(n-i)^k)^2$。

转换一下

$\sum_{i=0}^{n}\binom{n}{i}(i^k-(n-i)^k)^2$

$=2\sum_{i=0}^{n}\binom{n}{i}(i^{2k}-i^k(n-i)^k)$

注意到$i^{2k}$与$i^k(n-i)^k$在模$m$意义下都是一个周期为$m$的数列,那么我们需要求出每隔$m$个的组合数的和,即:

$2\sum_{i=0}^{m-1}(\sum_{j=0}^{\frac{n-i}{m}}\binom{n}{i+j*m}(i^{2k}-i^k(n-i)^k))$

把焦点放到内部的求和里面去,它是很简单的一个式子,试着转化它。首先我们可以根据Lucas定理分析出,对于外部的$i$,它的结果中一定有$ \binom{n\%m}{i} $。

剩下的是什么?首先有不等式$i+j*m \leq n\%m + \left \lfloor \frac{n}{m} \right \rfloor*m$。在这里我们毫无疑问地认为$i \leq n\%m$。否则对结果无影响。

我们接受$\left \lfloor \frac{n}{m} \right \rfloor$的所有影响,取满它,取满一排,它是$2$的次幂。

所以这个式子就等于$2\sum_{i=0}^{m-1}(\binom{n\%m}{i}*2^{\left \lfloor \frac{n}{m} \right \rfloor}(i^{2k}-i^k(n-i)^k))$

$\left \lfloor \frac{n}{m} \right \rfloor$很大,采用费马定理优化。

这样我们就可以解决它在$O(mlogk)$的时间内了。

注意,如果我们会线性求逆元以及线性筛,可以去掉log。

代码:

 #include<bits/stdc++.h>
using namespace std; const int maxn = ; int mod,nr,k,np;
char str[maxn];
int str2[maxn]; int c[maxn],rw[maxn]; void read(){
scanf("%s",str);
scanf("%d%d",&k,&mod);
int len = strlen(str);
for(register int i=;i<len;i++){ nr = nr*+str[i]-''; nr %= mod; }
for(register int i=,num=;i<len;i++){
np = np*+str[i]-''; str2[i] = np/mod; np %= mod;
} np = ;
for(register int i=;i<len;i++){
np = np*+str2[i]; np %= (mod-);
}
} int fast_pow(int now,int pw){
int ans = ,dd = now,base = ;
while(base <= pw){
if(base & pw){ans = (1ll*ans*dd)%mod;}
dd = (1ll*dd*dd)%mod;
base<<=;
}
return ans;
} int prime[maxn/],flag[maxn],num;
void get_prime(int N){
rw[] = ; flag[] = ;
for(int i=;i<=N;i++){
if(!flag[i]){prime[++num]=i;rw[i]=fast_pow(i,k);}
for(int j=;j<=num&&i*prime[j]<=N;j++){
flag[i*prime[j]] = ;
rw[i*prime[j]] = (1ll*rw[i]*rw[prime[j]])%mod;
if(i%prime[j] == ) break;
}
}
} void init(){
get_prime(nr);
np = fast_pow(,np+); c[] = ;
for(register int i=;i<=nr;i++){
c[i] = (1ll*c[i-]*(nr-i+))%mod;
c[i] = (1ll*c[i]*fast_pow(i,mod-))%mod;
}
} void work(){
int ans = ;
for(register int i=;i<mod;i++){
if(i > nr) break;
int hh = rw[i];
int pp = ((1ll*hh*hh)%mod) - (1ll*hh*rw[nr-i])%mod;
if(pp < ) pp += mod;
pp = (1ll*pp*c[i])%mod;
ans += pp; if(ans >= mod) ans -= mod;
}
ans += mod; if(ans >= mod) ans -=mod;
ans = (1ll*np*ans)%mod;
printf("%d",ans);
} int main(){
read();
init();
work();
return ;
}

51Nod1778 小Q的集合 【组合数】【Lucas定理】的更多相关文章

  1. uoj86 mx的组合数 (lucas定理+数位dp+原根与指标+NTT)

    uoj86 mx的组合数 (lucas定理+数位dp+原根与指标+NTT) uoj 题目描述自己看去吧( 题解时间 首先看到 $ p $ 这么小还是质数,第一时间想到 $ lucas $ 定理. 注意 ...

  2. [Swust OJ 247]--皇帝的新衣(组合数+Lucas定理)

    题目链接:http://acm.swust.edu.cn/problem/0247/ Time limit(ms): 1000 Memory limit(kb): 65535   Descriptio ...

  3. luogu4345 [SHOI2015]超能粒子炮·改(组合数/Lucas定理)

    link 输入\(n,k\),求\(\sum_{i=0}^k{n\choose i}\)对2333取模,10万组询问,n,k<=1e18 注意到一个2333这个数字很小并且还是质数这一良好性质, ...

  4. 【(好题)组合数+Lucas定理+公式递推(lowbit+滚动数组)+打表找规律】2017多校训练七 HDU 6129 Just do it

    http://acm.hdu.edu.cn/showproblem.php?pid=6129 [题意] 对于一个长度为n的序列a,我们可以计算b[i]=a1^a2^......^ai,这样得到序列b ...

  5. 【BZOJ-4591】超能粒子炮·改 数论 + 组合数 + Lucas定理

    4591: [Shoi2015]超能粒子炮·改 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 95  Solved: 33[Submit][Statu ...

  6. 组合数(Lucas定理) + 快速幂 --- HDU 5226 Tom and matrix

    Tom and matrix Problem's Link:   http://acm.hdu.edu.cn/showproblem.php?pid=5226 Mean: 题意很简单,略. analy ...

  7. 【组合数+Lucas定理模板】HDU 3037 Saving

    acm.hdu.edu.cn/showproblem.php?pid=3037 [题意] m个松果,n棵树 求把最多m个松果分配到最多n棵树的方案数 方案数有可能很大,模素数p 1 <= n, ...

  8. CodeForces-451E:Devu and Flowers (母函数+组合数+Lucas定理)

    Devu wants to decorate his garden with flowers. He has purchased n boxes, where the i-th box contain ...

  9. HDU3037Saving Beans(组合数+lucas定理)

    Problem Description Although winter is far away, squirrels have to work day and night to save beans. ...

随机推荐

  1. 蛙蛙推荐: TensorFlow Hello World 之平面拟合

    tensorflow 已经发布了 2.0 alpha 版本,所以是时候学一波 tf 了.官方教程有个平面拟合的类似Hello World的例子,但没什么解释,新手理解起来比较困难. 所以本文对这个案例 ...

  2. jQuery基础语法知识梳理

    一.attr() attr()方法设置或返回元素的属性. attr(属性名):获取元素属性名的值. attr(属性名,属性值):设置元素属性名的值. 例子: <a href=”http://12 ...

  3. Mike and strings CodeForces - 798B (又水又坑)

    题目链接 题意:英语很简单,自己取读吧. 思路: 既然n和i字符串的长度都很小,最大才50,那么就是只要能出答案就任意暴力瞎搞. 本人本着暴力瞎搞的初衷,写了又臭又长的200多行(代码框架占了50行) ...

  4. 使用C# HttpWebRequest进行多线程网页提交。Async httpclient/HttpWebRequest实现批量任务的发布及异步提交和超时取消

    使用线程池并发处理request请求及错误重试,使用委托处理UI界面输出. http://www.cnblogs.com/Charltsing/p/httpwebrequest.html for (i ...

  5. centos 7 network.service control process exited

    一.service network restart 出错 问题描述: vmware 12 下centos 7 网络模式,NAT 昨晚作者打算更新自己虚拟机python,发现没网络ping www.ba ...

  6. java总结:Java中获取系统时间(年、月、日)以及下拉菜单默认选择系统年、月、日的方法

    <!-- 获取系统当前的年.月.日 --> <%@ page import="java.util.*"%> <% Calendar calendar= ...

  7. Linux 文件特殊权限 SUID SGID SBIT

    文件除了常规的权限r, w, x 还有一些特殊的权限,s与t权限,具体的用处如下 1 SetUID 当s 这个标志出现在文件所有者的x权限上时, 例如/usr/bin/passwd, [root@or ...

  8. Sqlserver 命令行方式修改 用户密码的方法

    1. 之前写了一个 可以使用  ssms 的方式修改密码的情况 2. 还有办法是执行命令 exec sp_password null,'newpassword','sa' # sa 是用户名 newp ...

  9. ORA-28000: the account is locked解决办法

    ORA-28000: the account is locked第一步:使用PL/SQL,登录名为system,数据库名称不变,选择类型的时候把Normal修改为Sysdba;第二步:选择myjob, ...

  10. WPF 如何创建自己的WPF自定义控件库

    在我们平时的项目中,我们经常需要一套自己的自定义控件库,这个特别是在Prism这种框架下面进行开发的时候,每个人都使用一套统一的控件,这样才不会每个人由于界面不统一而造成的整个软件系统千差万别,所以我 ...