题目描述

 

输入

第一行给出数字N,M代表行列数.N,M均小于等于100 下面N行M列用于描述数字矩阵

输出

输出最多可以拿到多少块宝石

样例输入

2 2
1 2
2 1

样例输出

4
 
题意就是选取一些点使他们互不相邻且使选取点的点权和最大。我们将网格图黑白染色,将相邻点连边,显然这是个二分图,我们要求的就是二分图的最大独立集。建模时将源点连向黑点,流量为点权;黑点连向与它相邻的白点,流量为$INF$;将白点连向汇点,流量为点权。答案就是总点权和$-$最小割,被割的边所连点就是不选取的点。因为最小割使源汇点不连通,所以所有选取的黑点都不会流向白点,所有选取的白点不会有黑点流过来,即相邻的点不会被同时选取。

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<cmath>
using namespace std;
int head[12000];
int next[50000];
int to[50000];
int val[50000];
int d[12000];
int q[12000];
int n,m;
int tot=1;
int ans=0;
int S,T;
int s[200][200];
void add(int x,int y,int v)
{
tot++;
next[tot]=head[x];
head[x]=tot;
to[tot]=y;
val[tot]=v;
tot++;
next[tot]=head[y];
head[y]=tot;
to[tot]=x;
val[tot]=0;
}
bool bfs(int S,int T)
{
int r=0;
int l=0;
memset(q,0,sizeof(q));
memset(d,-1,sizeof(d));
q[r++]=S;
d[S]=0;
while(l<r)
{
int now=q[l];
for(int i=head[now];i;i=next[i])
{
if(d[to[i]]==-1&&val[i]!=0)
{
d[to[i]]=d[now]+1;
q[r++]=to[i];
}
}
l++;
}
return d[T]!=-1;
}
int dfs(int x,int flow)
{
if(x==T)
{
return flow;
}
int now_flow;
int used=0;
for(int i=head[x];i;i=next[i])
{
if(d[to[i]]==d[x]+1&&val[i]!=0)
{
now_flow=dfs(to[i],min(flow-used,val[i]));
val[i]-=now_flow;
val[i^1]+=now_flow;
used+=now_flow;
if(now_flow==flow)
{
return flow;
}
}
}
if(used==0)
{
d[x]=-1;
}
return used;
}
void dinic()
{
while(bfs(S,T)==true)
{
ans-=dfs(S,0x3f3f3f);
}
}
int main()
{
scanf("%d%d",&m,&n);
S=n*m+1;
T=n*m+2;
for(int i=1;i<=m;i++)
{
for(int j=1;j<=n;j++)
{
scanf("%d",&s[i][j]);
ans+=s[i][j];
if((i+j)%2==0)
{
add(S,n*(i-1)+j,s[i][j]);
}
else
{
add(n*(i-1)+j,T,s[i][j]);
}
}
}
for(int i=1;i<=m;i++)
{
for(int j=1;j<=n;j++)
{
if((i+j)%2==0)
{
if(i-1>0)
{
add(n*(i-1)+j,n*(i-2)+j,1<<30);
}
if(j-1>0)
{
add(n*(i-1)+j,n*(i-1)+j-1,1<<30);
}
if(i+1<=m)
{
add(n*(i-1)+j,n*i+j,1<<30);
}
if(j+1<=n)
{
add(n*(i-1)+j,n*(i-1)+j+1,1<<30);
}
}
}
}
dinic();
printf("%d",ans);
}

BZOJ1324Exca王者之剑&BZOJ1475方格取数——二分图最大独立集的更多相关文章

  1. [BZOJ1475]方格取数 网络流 最小割

    1475: 方格取数 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1025  Solved: 512[Submit][Status][Discuss] ...

  2. bzoj1475:方格取数

    传送门 最小割,这也是个经典题了,当初学最小割时没学会,这次算是理解了,首先二分图染色,将整个图分成黑色点和白色点,由于相邻的格子不能同时选,一个黑点一定对应四个白点,也就是我们只能选择这个黑点或者四 ...

  3. HDU1565 方格取数(1) —— 状压DP or 插头DP(轮廓线更新) or 二分图点带权最大独立集(最小割最大流)

    题目链接:https://vjudge.net/problem/HDU-1565 方格取数(1) Time Limit: 10000/5000 MS (Java/Others)    Memory L ...

  4. HDU1569 方格取数(2) —— 二分图点带权最大独立集、最小割最大流

    题目链接:https://vjudge.net/problem/HDU-1569 方格取数(2) Time Limit: 10000/5000 MS (Java/Others)    Memory L ...

  5. 【BZOJ1475】方格取数 [最小割]

    方格取数 Time Limit: 5 Sec  Memory Limit: 64 MB[Submit][Status][Discuss] Description 在一个n*n的方格里,每个格子里都有一 ...

  6. XTU 二分图和网络流 练习题 C. 方格取数(1)

    C. 方格取数(1) Time Limit: 5000ms Memory Limit: 32768KB 64-bit integer IO format: %I64d      Java class ...

  7. 线性规划与网络流24题●09方格取数问题&13星际转移问题

    ●(做codevs1908时,发现测试数据也涵盖了1907,想要一并做了,但因为“技术”不佳,搞了一上午) ●09方格取数问题(codevs1907  方格取数3) 想了半天,也没成功建好图: 无奈下 ...

  8. hdu1569-方格取数-二分图网络流

    方格取数(2) Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Su ...

  9. HDU 1569 方格取数(2) (最小割)

    方格取数(2) Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Su ...

随机推荐

  1. 讲一个关于paxos的故事...

    先讲一个故事. 从前,在国王Leslie Lamport的统治下,有个黑暗的希腊城邦叫paxos.城邦里有3类人, 决策者 提议者 群众 虽然这是一个黑暗的城邦但是很民主,按照议会民主制的政治模式制订 ...

  2. js、jquery实现放大镜效果

    在一些电商网站的商品详情页面,都会有放大镜效果,实现起来并不是很困难,今天用了两个小时,写了一个放大镜效果的实例,来分享给大家! 实现的效果大概是这个样子的 预览 先来看一下效果吧,点击下面的链接预览 ...

  3. TCP/IP 协议 OSI七层协议

    ------------------你来自何处并不重要,重要的是你要去往何方,人生最重要的不是所站的位置,而是所去的方向.人只要不失去方向,就永远不会失去自己! day 27 # # -------- ...

  4. Mysql:is not allowed to connect to this MySQL server

    连接mysql的时候发生这个错误:ERROR 1130: Host '192.168.1.110' is not allowed to connect to this MySQL server 解决方 ...

  5. Rimworld单人生存记

    开局什么也没有,第一天按原来的墙造了个卧室差不多就完了,可见工作效率之低.花了三四天才种好水稻+草莓,做了短弓,挖了一些钢铁,造了燃料炉灶和屠宰台.第五天来了个人,我用短弓和他打,问题是远程最多打一下 ...

  6. Python_程序实现发红包

    发红包 200块钱  20个红包 将200块随机分成20份 基础版本: import random ret = random.sample(range(1, 200 * 100), 19) ret = ...

  7. Git分支合并:Merge、Rebase的选择

    git代码合并:Merge.Rebase的选择 - iTech - 博客园http://www.cnblogs.com/itech/p/5188932.html Git如何将一个分支的修改同步到另一个 ...

  8. WIN下修改host文件并立即生效

    怎样修改WIN7下的host文件_百度经验https://jingyan.baidu.com/article/9faa72317903f1473c28cb01.html hosts立即生效的方法 - ...

  9. IdentityServer4【Introduction】之支持的规范

    支持的规范 identityserver实现了下面的规范 OpenID Connect OpenID Connect Core 1.0 (spec) OpenID Connect Discovery ...

  10. Linux启动/停止/重启Mysql数据库

    1.查看mysql版本 1)status; 2)select version(); 2.Mysql启动 1)使用 service 启动: service mysqld start (5.0版本是mys ...