Mysql加锁过程详解(3)-关于mysql 幻读理解
Mysql加锁过程详解(2)-关于mysql 幻读理解出现了幻读,那么不是说mysql的重复读解决了幻读的么?
那么,InnoDB指出的可以避免幻读是怎么回事呢?
http://dev.mysql.com/doc/refman/5.0/en/innodb-record-level-locks.html
By default, InnoDB operates in REPEATABLE READ transaction isolation level and with the innodb_locks_unsafe_for_binlog system variable disabled. In this case, InnoDB uses next-key locks for searches and index scans, which prevents phantom rows (see Section 13.6.8.5, “Avoiding the Phantom Problem Using Next-Key Locking”).
准备的理解是,当隔离级别是可重复读,且禁用innodb_locks_unsafe_for_binlog的情况下,在搜索和扫描index的时候使用的next-key locks可以避免幻读。
关键点在于,是InnoDB默认对一个普通的查询也会加next-key locks,还是说需要应用自己来加锁呢?如果单看这一句,可能会以为InnoDB对普通的查询也加了锁,如果是,那和序列化(SERIALIZABLE)的区别又在哪里呢?
MySQL manual里还有一段:
13.2.8.5. Avoiding the Phantom Problem Using Next-Key Locking (http://dev.mysql.com/doc/refman/5.0/en/innodb-next-key-locking.html)
To prevent phantoms,
InnoDBuses an algorithm called next-key locking that combines index-row locking with gap locking.You can use next-key locking to implement a uniqueness check in your application: If you read your data in share mode and do not see a duplicate for a row you are going to insert, then you can safely insert your row and know that the next-key lock set on the successor of your row during the read prevents anyone meanwhile inserting a duplicate for your row. Thus, the next-key locking enables you to “lock” the nonexistence of something in your table.
我的理解是说,InnoDB提供了next-key locks,但需要应用程序自己去加锁。manual里提供一个例子:
SELECT * FROM child WHERE id > 100 FOR UPDATE;
这样,InnoDB会给id大于100的行(假如child表里有一行id为102),以及100-102,102+的gap都加上锁。
可以使用show innodb status来查看是否给表加上了锁。
下面看列子
例子1
|
a |
b |
|
SET SESSION TRANSACTION ISOLATION LEVEL REPEATABLE READ; |
|
|
SET AUTOCOMMIT=0; |
|
|
BEGIN |
BEGIN |
|
SELECT * FROM test WHERE a='1' FOR UPDATE; |
|
|
SELECT * FROM test |
|
|
|
|
INSERT test VALUES(1,1); |
|
|
锁住了 |
|
|
INSERT test VALUES(1,1); |
|
|
成功 |
|
|
COMMIT |
|
|
|
|
COMMIT |
|
|
避免幻读可以select锁住,再insert |
|
例子2
|
a |
b |
|
SET SESSION TRANSACTION ISOLATION LEVEL REPEATABLE READ; |
|
|
SET AUTOCOMMIT=0; |
|
|
BEGIN |
BEGIN |
|
SELECT * FROM test WHERE a='1' FOR UPDATE; |
|
|
SELECT * FROM test |
|
|
|
|
INSERT test VALUES(2,2); |
|
|
连2也被锁住了? |
|
|
INSERT test VALUES(1,1); |
|
|
成功 |
|
|
COMMIT |
|
|
这次提交成功 |
|
|
COMMIT |
|
|
其他尝试,这种情况无论插入2还是5都被锁住等等 |
|
例子3
|
a |
b |
|
SET SESSION TRANSACTION ISOLATION LEVEL REPEATABLE READ; |
|
|
SET AUTOCOMMIT=0; |
|
|
BEGIN |
BEGIN |
|
SELECT * FROM test |
SELECT * FROM test |
|
|
|
SELECT * FROM test WHERE a='1' FOR UPDATE; |
|
|
|
SELECT * FROM test |
|
|
|
INSERT test VALUES(2,2); |
|
|
|
|
|
COMMIT |
COMMIT |
|
成功 |
|
|
COMMIT |
|
|
COMMIT |
|
例子 4
|
a |
b |
|
SET SESSION TRANSACTION ISOLATION LEVEL REPEATABLE READ; |
|
|
SET AUTOCOMMIT=0; |
|
|
BEGIN |
BEGIN |
|
SELECT * FROM test |
SELECT * FROM test |
|
|
|
SELECT * FROM test WHERE a='2' FOR UPDATE; |
|
|
|
|
SELECT * FROM test |
|
|
|
|
INSERT test VALUES(2,2); |
|
|
|
|
|
INSERT test VALUES(5,5); |
|
|
|
|
COMMIT |
COMMIT |
例子 5
|
a |
b |
|
SET SESSION TRANSACTION ISOLATION LEVEL REPEATABLE READ; |
|
|
SET AUTOCOMMIT=0; |
|
|
BEGIN |
BEGIN |
|
SELECT * FROM test |
SELECT * FROM test |
|
|
|
SELECT * FROM test WHERE a='1' FOR UPDATE; |
|
|
INSERT test VALUES(5,5); |
|
|
插入5成功了 |
|
|
UPDATE test SET b=33 WHERE a='3' |
|
|
|
|
INSERT test VALUES(2,2); |
|
|
2也可以 |
|
|
UPDATE test SET b=11 WHERE a='1' |
|
|
1锁住了 |
|
|
COMMIT |
|
|
|
|
COMMIT |
|
|
SELECT * FROM test |
SELECT * FROM test |
|
|
以上例子说明,forupdate时候,id为主键,RR策略时候,锁住了的条件符合的行,但是如果条件找不到任何列,锁住的是整个表,(主键,唯一索引,非唯一索引,(insert,update对于gab锁不通),参考第一章,第七章,第九章)
------------------------------------------------------------------
再来看大神的解释 :链接: http://blog.bitfly.cn/post/mysql-innodb-phantom-read/
再看一个实验,要注意,表t_bitfly里的id为主键字段。实验三:
t Session A Session B
|
| START
TRANSACTION;
START TRANSACTION;|
| SELECT * FROM t_bitfly
| WHERE id<=1
| FOR UPDATE;
| +------+-------+
| | id | value |
| +------+-------+
| | 1 |
a
|| +------+-------+
|
INSERT INTO t_bitfly|
VALUES (2, 'b');|
Query OK, 1 row affected|
| SELECT * FROM t_bitfly;
| +------+-------+
| | id | value |
| +------+-------+
| | 1 |
a
|| +------+-------+
|
INSERT INTO t_bitfly|
VALUES (0, '0');|
(waiting for lock ...|
then timeout)|
ERROR 1205 (HY000):|
Lock wait timeout exceeded;|
try restarting transaction|
| SELECT * FROM t_bitfly;
| +------+-------+
| | id | value |
| +------+-------+
| | 1 |
a
|| +------+-------+
|
COMMIT;|
| SELECT * FROM t_bitfly;
| +------+-------+
| | id | value |
| +------+-------+
| | 1 |
a
|| +------+-------+
v
可以看到,用id<=1加的锁,只锁住了id<=1的范围,可以成功添加id为2的记录,添加id为0的记录时就会等待锁的释放。
MySQL manual里对可重复读里的锁的详细解释:
http://dev.mysql.com/doc/refman/5.0/en/set-transaction.html#isolevel_repeatable-read
For locking reads (
SELECTwithFORor
UPDATELOCK),
IN SHARE MODEUPDATE,
andDELETEstatements,
locking depends on whether the statement uses a unique index with a
unique search condition, or a range-type search condition. For a
unique index with a unique search
condition,InnoDBlocks
only the index record found, not the gap before it. For other
search conditions,InnoDBlocks
the index range scanned, using gap locks or next-key (gap plus
index-record) locks to block insertions by other sessions into the
gaps covered by the range.
------
一致性读和提交读,先看实验,实验四:
t Session
A
Session B|
| START
TRANSACTION;
START TRANSACTION;|
| SELECT * FROM t_bitfly;
| +----+-------+
| | id | value |
| +----+-------+
| | 1 |
a
|| +----+-------+
|
INSERT INTO t_bitfly|
VALUES (2, 'b');|
COMMIT;|
| SELECT * FROM t_bitfly;
| +----+-------+
| | id | value |
| +----+-------+
| | 1 |
a
|| +----+-------+
|
| SELECT * FROM t_bitfly LOCK IN SHARE MODE;
| +----+-------+
| | id | value |
| +----+-------+
| | 1 |
a
|| | 2 |
b
|| +----+-------+
|
| SELECT * FROM t_bitfly FOR UPDATE;
| +----+-------+
| | id | value |
| +----+-------+
| | 1 |
a
|| | 2 |
b
|| +----+-------+
|
| SELECT * FROM t_bitfly;
| +----+-------+
| | id | value |
| +----+-------+
| | 1 |
a
|| +----+-------+
v
如果使用普通的读,会得到一致性的结果,如果使用了加锁的读,就会读到“最新的”“提交”读的结果。
本身,可重复读和提交读是矛盾的。在同一个事务里,如果保证了可重复读,就会看不到其他事务的提交,违背了提交读;如果保证了提交读,就会导致前后两次读到的结果不一致,违背了可重复读。
可以这么讲,InnoDB提供了这样的机制,在默认的可重复读的隔离级别里,可以使用加锁读去查询最新的数据。
http://dev.mysql.com/doc/refman/5.0/en/innodb-consistent-read.html
If you want to see the “freshest” state of the database, you should
use either the READ COMMITTED isolation level or a locking
read:SELECT * FROM t_bitfly LOCK IN SHARE MODE;
结论:MySQL InnoDB的可重复读并不保证避免幻读,需要应用使用加锁读来保证。而这个加锁度使用到的机制就是next-key
locks。
结论:mysql 的重复读解决了幻读的现象,但是需要 加上 select for update/lock in share mode 变成当前读避免幻读,普通读select存在幻读
Mysql加锁过程详解(3)-关于mysql 幻读理解的更多相关文章
- Mysql加锁过程详解(8)-理解innodb的锁(record,gap,Next-Key lock)
Mysql加锁过程详解(1)-基本知识 Mysql加锁过程详解(2)-关于mysql 幻读理解 Mysql加锁过程详解(3)-关于mysql 幻读理解 Mysql加锁过程详解(4)-select fo ...
- Mysql加锁过程详解(9)-innodb下的记录锁,间隙锁,next-key锁
Mysql加锁过程详解(1)-基本知识 Mysql加锁过程详解(2)-关于mysql 幻读理解 Mysql加锁过程详解(3)-关于mysql 幻读理解 Mysql加锁过程详解(4)-select fo ...
- Mysql加锁过程详解(1)-基本知识
Mysql加锁过程详解(1)-基本知识 Mysql加锁过程详解(2)-关于mysql 幻读理解 Mysql加锁过程详解(3)-关于mysql 幻读理解 Mysql加锁过程详解(4)-select fo ...
- Mysql加锁过程详解(2)-关于mysql 幻读理解
Mysql加锁过程详解(1)-基本知识 Mysql加锁过程详解(2)-关于mysql 幻读理解 Mysql加锁过程详解(3)-关于mysql 幻读理解 Mysql加锁过程详解(4)-select fo ...
- Mysql加锁过程详解(4)-select for update/lock in share mode 对事务并发性影响
Mysql加锁过程详解(1)-基本知识 Mysql加锁过程详解(2)-关于mysql 幻读理解 Mysql加锁过程详解(3)-关于mysql 幻读理解 Mysql加锁过程详解(4)-select fo ...
- Mysql加锁过程详解(5)-innodb 多版本并发控制原理详解
Mysql加锁过程详解(1)-基本知识 Mysql加锁过程详解(2)-关于mysql 幻读理解 Mysql加锁过程详解(3)-关于mysql 幻读理解 Mysql加锁过程详解(4)-select fo ...
- Mysql加锁过程详解(6)-数据库隔离级别(1)
Mysql加锁过程详解(1)-基本知识 Mysql加锁过程详解(2)-关于mysql 幻读理解 Mysql加锁过程详解(3)-关于mysql 幻读理解 Mysql加锁过程详解(4)-select fo ...
- Mysql加锁过程详解(6)-数据库隔离级别(2)-通过例子理解事务的4种隔离级别
Mysql加锁过程详解(1)-基本知识 Mysql加锁过程详解(2)-关于mysql 幻读理解 Mysql加锁过程详解(3)-关于mysql 幻读理解 Mysql加锁过程详解(4)-select fo ...
- Mysql加锁过程详解(7)-初步理解MySQL的gap锁
Mysql加锁过程详解(1)-基本知识 Mysql加锁过程详解(2)-关于mysql 幻读理解 Mysql加锁过程详解(3)-关于mysql 幻读理解 Mysql加锁过程详解(4)-select fo ...
随机推荐
- Spring RestTemplate get post 请求 携带 headers
RestTemplate 1.我用RestTemplate请求时 我把他注入到容器里 这样可以 什么用什么时候拿 2.也可以new出来 不过我不喜欢 所以就没有用new的 下面我自己的方法 先注 ...
- 工程无法正常调试运行unknown failure at android.os.Binder.execTransact
同事正常使用的工程,放到另电脑上,开后可以正常编译,但是无法安装调试到手机上,始终提示错误 新建一个工程正常. 最后通过把开发工具升级到最新版本解决.
- 数据结构C语言顺序表
#include <stdio.h> #include <stdlib.h> typedef int EmenType; typedef struct Node { int d ...
- shell传递参数
简单介绍python的脚本传参 我们知道python脚本传递参数,有一个很方便的方式-sys.argv.它将脚本本身名字和后面的各项参数都放入一个列表. 使用的时候,索引这个列表就可以了.例如: py ...
- restful状态码常用
在进行后端接口API封装的过程中,需要考虑各种错误信息的输出.一般情况下,根据相应问题输出适合的HTTP状态码,可以方便前端快速定位错误,减少沟通成本. HTTP状态码有很多,每个都有对应的含义,下面 ...
- azure cosmos db (mongo DB)
使用.net mongo的操作类操作azure(微软云)cosmosdb时,发现在做delete的操作的时候可以传一个文档对象,但是最后这个文档会解析成具体的sql语句,而当文档特别大时这样就出先了转 ...
- entity framework 上下文对象跟踪相关
entity framework 上下文对于对象的跟踪有2中方式进行控制,第一种从数据库查询但不加载到上下文. 这里可以用到.AsNoTracing()方法. 这里用到的是实体(entity)在上下文 ...
- SpringBoot 基础01
SpringBoot 基础 pom.xml <!-- Spring Boot 依赖版本控制 --> <parent> <groupId>org.springfram ...
- RabbitMQ Routing 消息路由
上篇文章中,我们构建了一个简单的日志系统.接下来,我们将丰富它:能够使用不同的severity来监听不同等级的log.比如我们希望只有error的log才保存到磁盘上. 1. Bindings绑定 上 ...
- 录音--获取语音流(pyAudio)
这是学习时的笔记,包含相关资料链接,有的当时没有细看,记录下来在需要的时候回顾. 有些较混乱的部分,后续会再更新. 欢迎感兴趣的小伙伴一起讨论,跪求大神指点~ 录音-语音流(pyAudio) tags ...







