问题描述
  在图像编码的算法中,需要将一个给定的方形矩阵进行Z字形扫描(Zigzag Scan)。给定一个n×n的矩阵,Z字形扫描的过程如下图所示:

  对于下面的4×4的矩阵,
  1 5 3 9
  3 7 5 6
  9 4 6 4
  7 3 1 3
  对其进行Z字形扫描后得到长度为16的序列:
  1 5 3 9 7 3 9 5 4 7 3 6 6 4 1 3
  请实现一个Z字形扫描的程序,给定一个n×n的矩阵,输出对这个矩阵进行Z字形扫描的结果。
输入格式
  输入的第一行包含一个整数n,表示矩阵的大小。
  输入的第二行到第n+1行每行包含n个正整数,由空格分隔,表示给定的矩阵。
输出格式
  输出一行,包含n×n个整数,由空格分隔,表示输入的矩阵经过Z字形扫描后的结果。
样例输入
4
1 5 3 9
3 7 5 6
9 4 6 4
7 3 1 3
样例输出
1 5 3 9 7 3 9 5 4 7 3 6 6 4 1 3
评测用例规模与约定
  1≤n≤500,矩阵元素为不超过1000的正整数。
题目的分析解答:
     这里提供两种解题思路,一种是纯找规律来进行实现的,还有一种是基于Z字形扫描的较常规处理办法,下面我们来详细介绍一下这两种解法。
其一:对矩阵的元素进行分析,发现扫描的路径大致是这样的:
0:  a[0][0]
1:  a[0][1]->a[1][0]
2:  a[2][0]->a[1][1]->a[0][2]
3:  a[0][3]->a[1][2]->a[2][1]->a[3][0]
4:  a[3][1]->a[2][2]->a[1][3]
5:  a[2][3]->a[3][2]
6:  a[3][3]
显然发现整个扫描过程是从0扫到2*(n-1)的,而且矩阵的两个下标之和等于扫描的顺序i,所以每一次只需要判断矩阵的扫描是从某一行开始还是从某一列开始,经过观察发现当扫面过程处于偶数时是在列开始的,因此整个过程就很好确定了。源代码如下所示:

#include<iostream>
#include<vector>
using namespace std;

int main()
{ int n;
cin>>n;
int a[500][500]={0};
for(int i=0;i<n;i++)
{
for(int j=0;j<n;j++)
{
cin>>a[i][j];
}
}
for(int i=0;i<=(2*(n-1));i++)
{
for(int k=0;k<n;k++ )
{
for(int j=0;j<n;j++)
{
if(k+j==i)
{
if(i%2==0)
{
cout<<a[j][k]<<" ";
}else{

cout<<a[k][j]<<" ";
}
}
}
}
}

return 0;
}

其二:

分析这类题,首先要找出扫描的规律,从题目中可以发现,扫描是成Z字形的。那么也就是说对于扫描输出有四种状态,每次输出要判定下一次的行走路线,走一步就输出一个。

四种状态为{right,leftDown,down,rightUp}。

开始我还怀疑,Z字形扫描矩阵是否能够遍历矩阵所有的元素。下面我们来分析一下:

1、前提是这个矩阵是一个n维方阵,假设为Anxn.

2、从输出当前的元素A[i][j],并根据当前的状态来判断下一步的扫描状态。该如何判断呢?可以发现每次在执行完当前状态后,行号i或者列号j都有可能发生改变,那么就可以结合当前状态和行,列号的取值来判定下一步的行走路线。

从上图中我们可以发现:

right状态始终在首行或者尾行上执行,并且执行right状态后列号j会增加1,即j = j+1。所以我们可以根据当前状态的下一步状态有两种:

当i == 0时,state = leftDown;

当i == n-1时,state = rightUp。

执行完leftDown状态后,i = i+1,j = j-1,其下一步状态有三种:

当 j == 0 && i != n-1时,state = down;

当 row == n-1时,state = right;

其它情况,state = leftDown(自身状态)。

对于rightUp和down状态,其分析方法和上面两种类似,就不再做分析。

综合上面分析来看,状态每次要发生改变的话,行号或者列号必须处于临界状态,即它们的取值为{0,n-1}。

#include <iostream>

using namespace std;

int A[501][501];
enum Choice
{
rightTowards,//向移动
rightUp,//向右上移动
down,//向下移动
leftDown//向左下移动
}; void zigzagScan(int n)
{
for (int i = 0; i < n; ++i)
for (int j = 0; j < n; ++j)
cin >> A[i][j];
int row = 0, col = 0;
Choice choice = rightTowards;
//row = n-1&&col = n-1的情况在while循环结束后处理,防止出现越界的情况
while (row != n - 1 || col != n - 1)
{
cout << A[row][col] << ' ';
switch (choice)
{
case rightTowards:
col++;
if (row == 0)
choice = leftDown;
else
choice = rightUp;
break;
case rightUp:
row--;
col++;
if (row == 0 && col != n - 1)
choice = rightTowards;
else if (col == n - 1)
choice = down;
else
choice = rightUp;
break;
case down:
row++;
if (col == 0)
choice = rightUp;
else
choice = leftDown;
break;
case leftDown:
row++;
col--;
if (col == 0 && row != n - 1)
choice = down;
else if (row == n - 1)
choice = rightTowards;
else
choice = leftDown;
break;
}
}
cout << A[n - 1][n - 1];
} void main(void)
{
int n;
while (cin >> n)
{
zigzagScan(n);
}
}
 

Z字形扫描(201412-2)的更多相关文章

  1. CCF——Z字形扫描问题

    试题编号: 201412-2 试题名称: Z字形扫描 时间限制: 2.0s 内存限制: 256.0MB 问题描述: 问题描述 在图像编码的算法中,需要将一个给定的方形矩阵进行Z字形扫描(Zigzag ...

  2. [CCF] Z字形扫描

    CCF Z字形扫描 感觉和LeetCode中的ZigZag还是有一些不一样的. 题目描述 在图像编码的算法中,需要将一个给定的方形矩阵进行Z字形扫描(Zigzag Scan).给定一个n×n的矩阵,Z ...

  3. CCF真题之Z字形扫描

    201412-2 问题描述 在图像编码的算法中,需要将一个给定的方形矩阵进行Z字形扫描(Zigzag Scan).给定一个n×n的矩阵,Z字形扫描的过程如下图所示: 对于下面的4×4的矩阵, 1 5 ...

  4. CCF系列之Z字形扫描(201412-2)

    试题编号:201412-2试题名称:Z字形扫描时间限制: 2.0s内存限制: 256.0MB 问题描述 在图像编码的算法中,需要将一个给定的方形矩阵进行Z字形扫描(Zigzag Scan).给定一个n ...

  5. CCF CSP 201412-2 Z字形扫描

    CCF计算机职业资格认证考试题解系列文章为meelo原创,请务必以链接形式注明本文地址 CCF CSP 201412-2 Z字形扫描 问题描述 在图像编码的算法中,需要将一个给定的方形矩阵进行Z字形扫 ...

  6. Z字形扫描矩阵

    问题描述 在图像编码的算法中,需要将一个给定的方形矩阵进行Z字形扫描(Zigzag Scan).给定一个n×n的矩阵,Z字形扫描的过程如下图所示: 对于下面的4×4的矩阵, 1 5 3 9 3 7 5 ...

  7. CSP201412-2:Z字形扫描

    引言:CSP(http://www.cspro.org/lead/application/ccf/login.jsp)是由中国计算机学会(CCF)发起的"计算机职业资格认证"考试, ...

  8. 201412-2 Z字形扫描(c语言)

    问题描述 在图像编码的算法中,需要将一个给定的方形矩阵进行Z字形扫描(Zigzag Scan).给定一个n×n的矩阵,Z字形扫描的过程如下图所示: 对于下面的4×4的矩阵, 1 5 3 9 3 7 5 ...

  9. CCF201412-2 Z字形扫描 java(100分)

    试题编号: 201412-2 试题名称: Z字形扫描 时间限制: 2.0s 内存限制: 256.0MB 问题描述: 问题描述 在图像编码的算法中,需要将一个给定的方形矩阵进行Z字形扫描(Zigzag ...

随机推荐

  1. 个人作业week3——代码复审

    1.     软件工程师的成长 感想 看了这么多博客,收获颇丰.一方面是对大牛们的计算机之路有了一定的了解,另一方面还是态度最重要,或者说用不用功最重要.这些博客里好些都是九几年或者零几年就开始学习编 ...

  2. GUID生成器

    这个GUID生成器是一个小巧的软件,属于笔者在空余时间开发的. http://pan.baidu.com/s/1sk6VGpn

  3. Spring bean依赖注入、bean的装配及相关注解

    依赖注入 Spring主要提供以下两种方法用于依赖注入 基于属性Setter方法注入 基于构造方法注入 Setter方法注入 例子: public class Communication { priv ...

  4. 简历生成平台项目开发-STEP2问卷调查结果统计分析

    根据之前设计的调查问卷,截止目前为止,一共收到64份问卷结果.一共16题,分别从基本信息.是否对简历制作有需要.对产品期望的特点和建议采纳四个方面设计问题.下面逐题分析问卷结果: 1.您的性别 可以看 ...

  5. Reactor 模式的简单实现

    Reactor 模式简单实现 在网上有部分文章在描述Netty时,会提到Reactor.这个Reactor到底是什么呢?为了搞清楚Reactor到底是什么鬼,我写了一个简单的Demo,来帮助大家理解他 ...

  6. 在Windows中玩转Docker Toolbox

    最近在研究虚拟化,容器和大数据,所以从Docker入手,下面介绍一下在Windows下怎么玩转Docker. Docker本身在Windows下有两个软件,一个就是Docker,另一个是Docker ...

  7. SQL中EXISTS的使用

    1.简介 不相关子查询:子查询的查询条件不依赖于父查询的称为不相关子查询. 相关子查询:子查询的查询条件依赖于外层父查询的某个属性值的称为相关子查询,带EXISTS 的子查询就是相关子查询 EXIST ...

  8. Oracle常用命令大全(很有用,做笔记)

    一.ORACLE的启动和关闭 1.在单机环境下 要想启动或关闭ORACLE系统必须首先切换到ORACLE用户,如下 su - oracle a.启动ORACLE系统 oracle>svrmgrl ...

  9. [数据科学] 从csv, xls文件中提取数据

    在python语言中,用丰富的函数库来从文件中提取数据,这篇博客讲解怎么从csv, xls文件中得到想要的数据. 点击下载数据文件http://seanlahman.com/files/databas ...

  10. python-pickle模块使用实例

    以下代码主要实现的是用户登录,注册,密码验证,账户锁定,重置和修改密码等功能 import pickle #第一次运行请去掉下面一段代码的注释 ''' users_db = open("us ...