C标准库提供了malloc,free,calloc,realloc,C++标准库还提供了new, new[], delete, delete[]。这些用来管理内存,看起来够用了,为啥还要自己写一个内存管理器呢?

原因还是从性能考虑:例如malloc和new是出于通用性考虑的,能处理多线程情况(multithread)。对于单线程的程序,这种额外的功能反而降低性能。

而且还注意到,new/delete/free/malloc都是要在user-space和kernel-code做切换的,context的切换会降低性能。如果自己写一个user-land的内存管理器,就能大幅减少这种切换。还有就是GC(garbage collection)。

几点要求

  1. 速度:比编译器的内存分配器要快才行
  2. 鲁棒:不能有内存泄漏,分配多少就收回多少
  3. 方便:用户不怎么需要改代码,就能把内存管理器加进去
  4. 移植:应当跨平台,用户在啥系统上都能用,方便移植

前人经验

  1. 申请大块内存

    一次性申请一大块内存,减少向系统申请的次数,以后需要申请内存就从这一大块上分配。

    (这不就是缓存么。。)
  2. 为特定尺寸优化

    任何程序中都一种最常见的内存申请尺寸。为这种尺寸优化,提升性能。
  3. 需要删除的内存暂时存放在容器中(敝帚自珍)

    从用户角度看,变量声明周期结束,要释放分配的内存;但是内存管理器实际上可以“不真的把这块内存还给系统”,而是攒起来留给后续需要分配内存时用。当然,这种内存更多的是碎片,所以再分配时可能不够用,那就得再找大块内存去分配了。

代码,版本1

首先是一个不使用内存管理器的代码,内存的申请和释放是手动完成的,并且放在for循环中,来频繁的申请和释放,方法这种做法的效果(慢啊)。代码:

#include <ctime>
#include <iostream>
using namespace std; class Complex
{
public:
Complex(double a, double b) : r(a),c(b)
{
}
private:
double r; //实部
double c; //虚部
}; int main(int argc, char* argv[])
{
Complex* array[1000];
clock_t t1,t2;
t1 = clock();
for (int i = 0; i < 5000; i++)
{
for (int j = 0; j < 1000; j++)
{
array[j] = new Complex(i,j);
}
for (int j=0;j<1000;j++)
{
delete array[j];
}
}
t2 = clock();
cout << double(t2-t1)/CLOCKS_PER_SEC << "s" << endl;
return 0;
}

代码,版本2

这次用一个内存管理类来托管内存的申请和释放,并且原有的Complex类上仅仅是重载了new/delete/new[]/delete[]这四个operator。放码过来:

#include <iostream>
#include <sys/types.h> using namespace std; class IMemoryManager{
public:
virtual void* allocate(size_t) = 0;
virtual void free(void*) = 0;
}; class MemoryManager: public IMemoryManager{
public:
MemoryManager(){
freestorehead = NULL;
ExpandPoolSize();
}
~MemoryManager(){
CleanUp();
}
void* allocate(size_t);
void free(void*);
private:
struct FreeStore{
FreeStore* next;
};
void ExpandPoolSize();
void CleanUp();
FreeStore* freestorehead;
}; MemoryManager gMemoryManager; class Complex {
public:
Complex(double a, double b): r(a), c(b){} inline void* operator new(size_t size){
return gMemoryManager.allocate(size);
} inline void operator delete(void* object){
gMemoryManager.free(object);
} inline void* operator new[](size_t size){
return gMemoryManager.allocate(size);
} inline void operator delete[](void* object){
return gMemoryManager.free(object);
}
private:
double r;
double c;
}; void* MemoryManager::allocate(size_t size){
if (0==freestorehead){
ExpandPoolSize();
}
FreeStore* head = freestorehead;
freestorehead = head->next;
return head;
} void MemoryManager::free(void* object){
FreeStore* head = static_cast<FreeStore*>(object);
head->next = freestorehead;
freestorehead = head;
} const int POOLSIZE = 128; void MemoryManager::ExpandPoolSize(){
size_t size = max(sizeof(Complex), sizeof(FreeStore*));
FreeStore* head = reinterpret_cast<FreeStore*>(new char[size]);
freestorehead = head; for(int i=0; i<POOLSIZE; i++){
head->next = reinterpret_cast<FreeStore*>(new char[size]);
head = head->next;
}
head->next = 0;
} void MemoryManager::CleanUp(){
FreeStore* nextPtr = freestorehead;
for(; nextPtr; nextPtr=freestorehead){
nextPtr = freestorehead;
freestorehead = freestorehead->next;
delete[] nextPtr;
}
} int main(int argc, char* argv[])
{
Complex* array[1000];
clock_t t1,t2;
t1 = clock();
for (int i = 0; i < 5000; i++)
{
for (int j = 0; j < 1000; j++)
{
array[j] = new Complex(i,j);
}
for (int j=0;j<1000;j++)
{
delete array[j];
}
}
t2 = clock();
cout << double(t2-t1)/CLOCKS_PER_SEC << "s" << endl;
return 0;
}

分析

时间开销对比

g++ main_v1.cpp -o main_v1 -O3
./main_v1
0.217214s g++ main_v2.cpp -o main_v2 -O3
./main_v2
0.026611s

两者的时间开销竟然相差一个数量级。

代码的正确性

其实new()申请内存的代码很不严谨,没有检查形参size是否会超过预设POOLSIZE大小,只不过通常情况下单次的size肯定小于POOLSIZE,但是极端情况下,或者一口气申请了多个变量的内存,可能会越界。另外,只适用于单线程。

以上内容来自IBM的一篇教程,还有很多内容没能看完和理解,挖坑带填:https://www.ibm.com/developerworks/aix/tutorials/au-memorymanager/index.html

C/C++内存管理器的更多相关文章

  1. PHP V5.2 中的新增功能,第 1 部分: 使用新的内存管理器

    PHP V5.2:开始 2006 年 11 月发布了 PHP V5.2,它包括许多新增功能和错误修正.它废止了 5.1 版并被推荐给所有 PHP V5 用户进行升级.我最喜欢的实验室环境 —— Win ...

  2. TaskTracker节点上的内存管理器

    Hadoop平台的最大优势就是充分地利用了廉价的PC机,这也就使得集群中的工作节点存在一个重要的问题——节点所在的PC机内存资源有限(这里所说的工作节点指的是TaskTracker节点),执行任务时常 ...

  3. STL内存管理器的分配策略

    STL提供了很多泛型容器,如vector,list和map.程序员在使用这些容器时只需关心何时往容器内塞对象,而不用关心如何管理内存,需要用多少内存,这些STL容器极大地方便了C++程序的编写.例如可 ...

  4. BBS项目详解(forms快速创建登陆页面,登陆验证、通过阅读器进行头像上传的预览、内存管理器)

    BBS项目涉及的知识点 django中知识点 钩子函数(局部钩子和全局钩子) 1.局部钩子就是用来做合法性校验,比如用户名有没有被使用等 2.全局的就是用来做对比校验,比如两次输入的密码是否一致 3. ...

  5. DLL何时需共享内存管理器

    Delphi创建DLL时,IDE自动生成的文档中写得很清楚,当在DLL中以动态数组或String做为参数或返回值时(即RTL自动维护的数据类型),请在每个工程文件的第一个单元加上ShareMem.这样 ...

  6. spark内存管理器--MemoryManager源码解析

    MemoryManager内存管理器 内存管理器可以说是spark内核中最重要的基础模块之一,shuffle时的排序,rdd缓存,展开内存,广播变量,Task运行结果的存储等等,凡是需要使用内存的地方 ...

  7. Netty内存管理器ByteBufAllocator及内存分配

    ByteBufAllocator 内存管理器: Netty 中内存分配有一个最顶层的抽象就是ByteBufAllocator,负责分配所有ByteBuf 类型的内存.功能其实不是很多,主要有以下几个重 ...

  8. android的低内存管理器【转】

    本文转载自:http://blog.csdn.net/haitaoliang/article/details/22092321 版权声明:本文为博主原创文章,未经博主允许不得转载. 安卓应用不用太在意 ...

  9. LevelDB(v1.3) 源码阅读之 Arena(内存管理器)

    LevelDB(v1.3) 源码阅读系列使用 LevelDB v1.3 版本的代码,可以通过如下方式下载并切换到 v1.3 版本的代码: $ git clone https://github.com/ ...

随机推荐

  1. ORACLE数据库,数据量大,转移数据到备份表语句

    INSERT INTO TEMP_BUS_TRAVEL_INFO ( SELECT * FROM BUS_TRAVEL_INFO t ') SELECT COUNT(*) FROM TEMP_BUS_ ...

  2. Spring Bean自动检测

    1-自动检测bean 需要用到<context:component-scan> 注意:a) 需要include进来xmlns:context命名空间:base-package指的是我们要扫 ...

  3. FAT文件系统规范v1.03学习笔记---3.根目录区之FAT目录项结构

    1.前言 本文主要是对Microsoft Extensible Firmware Initiative FAT32 File System Specification中文翻译版的学习笔记. 每个FAT ...

  4. 一道搜索题【2013 noip提高组 DAY2 t3】华容道

    这篇不多说,具体的解释都在程序里 题目描述 [问题描述] 小 B 最近迷上了华容道,可是他总是要花很长的时间才能完成一次.于是,他想到用编程来完成华容道:给定一种局面, 华容道是否根本就无法完成,如果 ...

  5. Excel 2013 表格自用技巧

    参考 Excel表格的基本操作(精选36个技巧) Excel2013基本用法 关于VLOOKUP函数 目录 快速复制单元格 单元格内强制换行 锁定标题行 查找重复值 万元显示 单元格中显示001 按月 ...

  6. https openssl http2

    2018-3-21 10:27:45 星期三 参考: 对https, http2的解释 总结: 生成自有证书(非第三方证书颁发公司) 我使用的是gitbash工具, 命令为: $ openssl re ...

  7. 使用OneNote2016发送博客

    本人使用的是博客园的博客,其他的博客设置应该大同小异,OneNote使用的是2016版本,系统为Win10家庭中文版. 传统的在web端编辑发布博客的方式是在是心累,图文编辑麻烦,不便于存储,编辑的时 ...

  8. kali sudo apt install 无法定位软件包

    在etc/apt   的sources.list 添加镜像源 debhttp://http.kali.org/kali kali-rolling main non-free contrib 或 deb ...

  9. 基于数组的循环队列(C++模板实现)

    循环队列使用数组实现的话,简单.方便.之前实现的队列,当尾端索引到达队列最后的时候,无论前面是否还有空间,都不能再添加数据了.循环队列使得队列的存储单元可以循环利用,它需要一个额外的存储单元来判断队列 ...

  10. 【原创】大数据基础之Logstash(3)应用之http(in和out)

    一个logstash很容易通过http打断成两个logstash实现跨服务器或者跨平台间数据同步,比如原来的流程是 logstash: nginx log -> kafka 打断成两个是 log ...