python网络编程socket /socketserver
提起网络编程,不同于web编程,它主要是C/S架构,也就是服务器、客户端结构的。对于初学者而言,最需要理解的不是网络的概念,而是python对于网络编程都提供了些什么模块和功能。不同于计算机发展的初级阶段,程序员走到今天,已经脱离了手工打造一切,要自己实现所有细节的年代。现在提倡的是不要重复造轮子,而是学习别人的轮子怎么用,只有那些有需求或能专研的人才去设计轮子甚至汽车,so,这是一个速成的年代。
因此,对于一个面向工作的python程序员,学习python的网络编程,其实学的就是那么几个模块,和你学习打游戏,word、excel没什么两样,本质上不是创造而是拿来主义,千万不要以为你需要从TCP/IP网络协议最底层开始一点一点实现所有的功能,它们都被封装在socket这个模块里。
socket概念
我相信,所有的初学者都曾经被各种各样的标准模块和第三方模块所困扰,不知道该用哪个。同时,每个模块也包含许许多多的类,继承关系复杂,更是让人挠头。读源码看官方文档研究高手的文章更是一个漫长的过程。为什么就没有人将这些模块和类给梳理一下呢???难道这就是编程界的自我封闭和筛选机制?
在谈及socket编程,必须知道这么几个概念:阻塞与非阻塞,同步与异步,多线程与多进程,IO多路复用与事件驱动。但是本文不打算讲这些。实际上你只需要知道两个模块三个类,就OK了,绝对速成!(以下为python3.5)
socket模块:socket类
socketserver模块:ThreadingTCPServer、ForkingTCPServer类
对于socket模块你必须透彻其原理,了熟于胸。但它是一个同步阻塞类型的模块,只能进行一对一的通信,在现今的计算机世界,属于最落后被淘汰的东西,基本不在实际中应用。
socketserver模块稍微有点用,它能通过多线程或多进程的方式与多个用户同时进行通信。从字面就能看出ThreadingTCPServer类是实现的多线程,ForkingTCPServer是实现的多进程。
socket模块
再怎么说它没用,它也是基础中的基础,不理解它的原理,那么更高级的模块就会掌握不透彻。
socket(套接字)是什么?socket就是两个节点为了互相通信,而在各自家里装的一部”电话“
socket模块是什么?socket模块是python内置的为了方便简单快速进行网络编程而提供的现成的”轮子“。它将TCP/IP协议进行了封装,你不需要知道如何进行网络通信,你只需要import socket,然后直接使用它提供的功能就好了。可以用下图来表示:

socket是基于C/S架构的,它的通信逻辑如下图:(借用图)

进行socket编程,必须写两个py文件,一个服务端,一个客户端。但是有两点必须强调:
1. python3以后,socket传递的都是bytes类型的数据,string需要先转换一下,string.encode()即可;
另一端接收到的bytes数据想转换成string,只要bytes.decode()一下就可以。
2. 在正常通信时,accept和recv方法是阻塞的,程序会暂停在那,一直等到有数据过来。
下面是一个例子:
#!/usr/bin/env python
# -*- coding:utf-8 -*-
import socket
ip_port = ('127.0.0.1',9999)
sk = socket.socket()
sk.bind(ip_port)
sk.listen(5)
while True:
print('server waiting...')
conn,addr = sk.accept()
client_data = conn.recv(1024)
print(client_data)
conn.sendall('我是黄河!')
conn.close()
socket server
#!/usr/bin/env python
# -*- coding:utf-8 -*-
import socket
ip_port = ('127.0.0.1',9999)
s = socket.socket()
s.connect(ip_port)
s.sendall('我是长江')
server_reply = s.recv(1024)
print(server_reply)
s.close()
socket client
方法分析:
sk = socket.socket(socket.AF_INET,socket.SOCK_STREAM,0) 实例化socket类的一个对象
参数一:地址簇
socket.AF_INET IPv4(默认)
socket.AF_INET6 IPv6
socket.AF_UNIX 只能够用于单一的Unix系统进程间通信
参数二:类型
socket.SOCK_STREAM 流式socket , for TCP (默认)
socket.SOCK_DGRAM 数据报式socket , for UDP
socket.SOCK_RAW 原始套接字,普通的套接字无法处理ICMP、IGMP等网络报文,而SOCK_RAW可以;其次,SOCK_RAW也可以处理特殊的IPv4报文;此外,利用原始套接字,可以通过IP_HDRINCL套接字选项由用户构造IP头。
socket.SOCK_RDM 是一种可靠的UDP形式,即保证交付数据报但不保证顺序。SOCK_RAM用来提供对原始协议的低级访问,在需要执行某些特殊操作时使用,如发送ICMP报文。SOCK_RAM通常仅限于高级用户或管理员运行的程序使用。
socket.SOCK_SEQPACKET 可靠的连续数据包服务
参数三:协议
0 (默认)与特定的地址家族相关的协议,如果是 0 ,则系统就会根据地址格式和套接类别,自动选择一个合适的协议
下面是一个UDP协议的例子,注意其中没有accept和connect的概念。
# 服务端
import socket
ip_port = ('127.0.0.1',9999)
sk = socket.socket(socket.AF_INET,socket.SOCK_DGRAM,0)
sk.bind(ip_port)
while True:
data = sk.recv(1024)
print(data)
# 客户端
import socket
ip_port = ('127.0.0.1',9999)
sk = socket.socket(socket.AF_INET,socket.SOCK_DGRAM,0)
while True:
inp = input('数据:').strip()
if inp == 'exit':
break
sk.sendto(inp,ip_port)
sk.close()
UDP Demo
sk.bind(address)
s.bind(address) 将套接字绑定到地址。address地址的格式取决于地址族。在AF_INET下,以元组(host,port)的形式表示地址。
sk.listen(backlog)
开始监听传入连接。backlog指定在拒绝连接之前,可以挂起的最大连接数量,也就是除了当前正在和服务器进行通信的连接外,还可以
进入链接池的连接个数。超过这个数的连接将被服务器积极拒绝,无法建立连接。backlog等于5,表示内核已经接到了连接请求,但服务器
还没有调用accept进行处理的连接个数最大为5,这个值不能无限大,因为要在内核中维护连接队列
sk.setblocking(bool)
是否阻塞(默认True),如果设置False,那么accept和recv时一旦无数据,则报错。socket由阻塞变成非阻塞模式的关键参数!
sk.accept()
接受连接并返回(conn,address),其中conn是新的套接字对象,可以用来接收和发送数据。address是连接客户端的地址。
接收TCP 客户的连接(阻塞式)等待连接的到来
sk.connect(address)
连接到address处的套接字。一般,address的格式为元组(hostname,port),如果连接出错,返回socket.error错误。
sk.connect_ex(address)
同上,只不过会有返回值,连接成功时返回 0 ,连接失败时候返回编码,例如:10061
sk.close()
关闭套接字
sk.recv(bufsize[,flag])
接受套接字的数据。数据以字符串形式返回,bufsize指定最多可以接收的数量。flag提供有关消息的其他信息,通常可以忽略。
sk.recvfrom(bufsize[.flag])
与recv()类似,但返回值是(data,address)。其中data是包含接收数据的字符串,address是发送数据的套接字地址。
sk.send(string[,flag])
将string中的数据发送到连接的套接字。返回值是要发送的字节数量,该数量可能小于string的字节大小。即:可能未将指定内容全部发送。
sk.sendall(string[,flag])
将string中的数据发送到连接的套接字,但在返回之前会尝试发送所有数据。成功返回None,失败则抛出异常。
内部通过递归调用send,将所有内容发送出去。
sk.sendto(string[,flag],address)
将数据发送到套接字,address是形式为(ipaddr,port)的元组,指定远程地址。返回值是发送的字节数。该函数主要用于UDP协议。
sk.settimeout(timeout)
设置套接字操作的超时期,timeout是一个浮点数,单位是秒。值为None表示没有超时期。一般,超时期应该在刚创建套接字时设置,
因为它们可能用于连接的操作(如 client 连接最多等待5s )
sk.getpeername()
返回连接套接字的远程地址。返回值通常是元组(ipaddr,port)。
sk.getsockname()
返回套接字自己的地址。通常是一个元组(ipaddr,port)
sk.fileno()
套接字的文件描述符
SocketServer模块
SocketServer内部使用 IO多路复用 以及 “多线程” 和 “多进程” ,从而实现并发处理多个客户端请求的Socket服务端。即:每个客户端请求连接到服务器时,Socket服务端都会在服务器内创建一个“线程”或者“进程” 专门负责处理当前客户端的所有请求。
ThreadingTCPServer(多线程)
ThreadingTCPServer实现的Soket服务器内部会为每个client创建一个 “线程”,该线程用来和客户端进行交互。服务器相当于一个总管,在接收连接并创建新的线程后,就撒手不管了,后面的通信就是线程和客户端之间的连接了,理解这一点很重要!
1、ThreadingTCPServer基础
使用ThreadingTCPServer:
- 创建一个继承自 SocketServer.BaseRequestHandler 的类
- 类中必须定义一个名称为 handle 的方法
- 启动ThreadingTCPServer
#!/usr/bin/env python
# -*- coding:utf-8 -*-
import socketserver
class MyServer(socketserver.BaseRequestHandler):
def handle(self):
# print self.request,self.client_address,self.server
conn = self.request
conn.sendall('欢迎致电 10086,请输入1xxx,0转人工服务.')
Flag = True
while Flag:
data = conn.recv(1024)
data = str(data, encoding="utf-8")
if data == 'exit':
Flag = False
':
conn.sendall(bytes('通过可能会被录音.balabala一大推',encoding="utf-8"))
else:
conn.sendall(bytes('请重新输入',encoding="utf-8"))
if __name__ == '__main__':
server = socketserver.ThreadingTCPServer(('127.0.0.1',8009),MyServer)
server.serve_forever()
SocketServer 服务器
#!/usr/bin/env python
# -*- coding:utf-8 -*-
import socket
ip_port = ('127.0.0.1',8009)
sk = socket.socket()
sk.connect(ip_port)
sk.settimeout(5)
while True:
data = sk.recv(1024)
print('receive:',data)
inp = input('please input:')
sk.sendall(bytes(inp, encoding="utf-8"))
if inp == 'exit':
break
sk.close()
socketserver 客户端
分析一下服务器端的代码,核心要点有这些:
- 连接对象不再是socket模块中的socket.socket()了,而是self.request,这是固定语法,不可变!以后调用send和recv方法都是使用self.request
- handle方法是整个连接的处理核心,一旦它运行结束,整个连接也就断了(但其他的线程和其他的客户端还正常),因此一般在此设置一个无限循环。
- 在server = SocketServer.ThreadingTCPServer(('127.0.0.1',8009),MyServer)这个实例化的过程中,必须将自己创建的类,作为参数传递进去
- server.serve_forever()表示该服务器在正常情况下将永远运行
2、ThreadingTCPServer源码剖析
ThreadingTCPServer类的继承关系如下:

内部调用流程为:
- 启动服务端程序
- 执行 TCPServer.__init__ 方法,创建服务端Socket对象并绑定 IP 和 端口
- 执行 BaseServer.__init__ 方法,将自定义的继承自SocketServer.BaseRequestHandler 的类 MyRequestHandle赋值给self.RequestHandlerClass
- 执行 BaseServer.server_forever 方法,While 循环一直监听是否有客户端请求到达 ...
- 当客户端连接到达服务器
- 执行 ThreadingMixIn.process_request 方法,创建一个 “线程” 用来处理请求
- 执行 ThreadingMixIn.process_request_thread 方法
- 执行 BaseServer.finish_request 方法,执行 self.RequestHandlerClass() 即:执行 自定义 MyRequestHandler 的构造方法(自动调用基类BaseRequestHandler的构造方法,在该构造方法中又会调用 MyRequestHandler的handle方法)
ThreadingTCPServer相关源码:
class BaseServer:
"""Base class for server classes.
Methods for the caller:
- __init__(server_address, RequestHandlerClass)
- serve_forever(poll_interval=0.5)
- shutdown()
- handle_request() # if you do not use serve_forever()
- fileno() -> int # for select()
Methods that may be overridden:
- server_bind()
- server_activate()
- get_request() -> request, client_address
- handle_timeout()
- verify_request(request, client_address)
- server_close()
- process_request(request, client_address)
- shutdown_request(request)
- close_request(request)
- handle_error()
Methods for derived classes:
- finish_request(request, client_address)
Class variables that may be overridden by derived classes or
instances:
- timeout
- address_family
- socket_type
- allow_reuse_address
Instance variables:
- RequestHandlerClass
- socket
"""
timeout = None
def __init__(self, server_address, RequestHandlerClass):
"""Constructor. May be extended, do not override."""
self.server_address = server_address
self.RequestHandlerClass = RequestHandlerClass
self.__is_shut_down = threading.Event()
self.__shutdown_request = False
def server_activate(self):
"""Called by constructor to activate the server.
May be overridden.
"""
pass
def serve_forever(self, poll_interval=0.5):
"""Handle one request at a time until shutdown.
Polls for shutdown every poll_interval seconds. Ignores
self.timeout. If you need to do periodic tasks, do them in
another thread.
"""
self.__is_shut_down.clear()
try:
while not self.__shutdown_request:
# XXX: Consider using another file descriptor or
# connecting to the socket to wake this up instead of
# polling. Polling reduces our responsiveness to a
# shutdown request and wastes cpu at all other times.
r, w, e = _eintr_retry(select.select, [self], [], [],
poll_interval)
if self in r:
self._handle_request_noblock()
finally:
self.__shutdown_request = False
self.__is_shut_down.set()
def shutdown(self):
"""Stops the serve_forever loop.
Blocks until the loop has finished. This must be called while
serve_forever() is running in another thread, or it will
deadlock.
"""
self.__shutdown_request = True
self.__is_shut_down.wait()
# The distinction between handling, getting, processing and
# finishing a request is fairly arbitrary. Remember:
#
# - handle_request() is the top-level call. It calls
# select, get_request(), verify_request() and process_request()
# - get_request() is different for stream or datagram sockets
# - process_request() is the place that may fork a new process
# or create a new thread to finish the request
# - finish_request() instantiates the request handler class;
# this constructor will handle the request all by itself
def handle_request(self):
"""Handle one request, possibly blocking.
Respects self.timeout.
"""
# Support people who used socket.settimeout() to escape
# handle_request before self.timeout was available.
timeout = self.socket.gettimeout()
if timeout is None:
timeout = self.timeout
elif self.timeout is not None:
timeout = min(timeout, self.timeout)
fd_sets = _eintr_retry(select.select, [self], [], [], timeout)
if not fd_sets[0]:
self.handle_timeout()
return
self._handle_request_noblock()
def _handle_request_noblock(self):
"""Handle one request, without blocking.
I assume that select.select has returned that the socket is
readable before this function was called, so there should be
no risk of blocking in get_request().
"""
try:
request, client_address = self.get_request()
except socket.error:
return
if self.verify_request(request, client_address):
try:
self.process_request(request, client_address)
except:
self.handle_error(request, client_address)
self.shutdown_request(request)
def handle_timeout(self):
"""Called if no new request arrives within self.timeout.
Overridden by ForkingMixIn.
"""
pass
def verify_request(self, request, client_address):
"""Verify the request. May be overridden.
Return True if we should proceed with this request.
"""
return True
def process_request(self, request, client_address):
"""Call finish_request.
Overridden by ForkingMixIn and ThreadingMixIn.
"""
self.finish_request(request, client_address)
self.shutdown_request(request)
def server_close(self):
"""Called to clean-up the server.
May be overridden.
"""
pass
def finish_request(self, request, client_address):
"""Finish one request by instantiating RequestHandlerClass."""
self.RequestHandlerClass(request, client_address, self)
def shutdown_request(self, request):
"""Called to shutdown and close an individual request."""
self.close_request(request)
def close_request(self, request):
"""Called to clean up an individual request."""
pass
def handle_error(self, request, client_address):
"""Handle an error gracefully. May be overridden.
The default is to print a traceback and continue.
"""
print '-'*40
print 'Exception happened during processing of request from',
print client_address
import traceback
traceback.print_exc() # XXX But this goes to stderr!
print '-'*40
BaseServer
class TCPServer(BaseServer):
"""Base class for various socket-based server classes.
Defaults to synchronous IP stream (i.e., TCP).
Methods for the caller:
- __init__(server_address, RequestHandlerClass, bind_and_activate=True)
- serve_forever(poll_interval=0.5)
- shutdown()
- handle_request() # if you don't use serve_forever()
- fileno() -> int # for select()
Methods that may be overridden:
- server_bind()
- server_activate()
- get_request() -> request, client_address
- handle_timeout()
- verify_request(request, client_address)
- process_request(request, client_address)
- shutdown_request(request)
- close_request(request)
- handle_error()
Methods for derived classes:
- finish_request(request, client_address)
Class variables that may be overridden by derived classes or
instances:
- timeout
- address_family
- socket_type
- request_queue_size (only for stream sockets)
- allow_reuse_address
Instance variables:
- server_address
- RequestHandlerClass
- socket
"""
address_family = socket.AF_INET
socket_type = socket.SOCK_STREAM
request_queue_size = 5
allow_reuse_address = False
def __init__(self, server_address, RequestHandlerClass, bind_and_activate=True):
"""Constructor. May be extended, do not override."""
BaseServer.__init__(self, server_address, RequestHandlerClass)
self.socket = socket.socket(self.address_family,
self.socket_type)
if bind_and_activate:
try:
self.server_bind()
self.server_activate()
except:
self.server_close()
raise
def server_bind(self):
"""Called by constructor to bind the socket.
May be overridden.
"""
if self.allow_reuse_address:
self.socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
self.socket.bind(self.server_address)
self.server_address = self.socket.getsockname()
def server_activate(self):
"""Called by constructor to activate the server.
May be overridden.
"""
self.socket.listen(self.request_queue_size)
def server_close(self):
"""Called to clean-up the server.
May be overridden.
"""
self.socket.close()
def fileno(self):
"""Return socket file number.
Interface required by select().
"""
return self.socket.fileno()
def get_request(self):
"""Get the request and client address from the socket.
May be overridden.
"""
return self.socket.accept()
def shutdown_request(self, request):
"""Called to shutdown and close an individual request."""
try:
#explicitly shutdown. socket.close() merely releases
#the socket and waits for GC to perform the actual close.
request.shutdown(socket.SHUT_WR)
except socket.error:
pass #some platforms may raise ENOTCONN here
self.close_request(request)
def close_request(self, request):
"""Called to clean up an individual request."""
request.close()
TCPServer
class ThreadingMixIn:
"""Mix-in class to handle each request in a new thread."""
# Decides how threads will act upon termination of the
# main process
daemon_threads = False
def process_request_thread(self, request, client_address):
"""Same as in BaseServer but as a thread.
In addition, exception handling is done here.
"""
try:
self.finish_request(request, client_address)
self.shutdown_request(request)
except:
self.handle_error(request, client_address)
self.shutdown_request(request)
def process_request(self, request, client_address):
"""Start a new thread to process the request."""
t = threading.Thread(target = self.process_request_thread,
args = (request, client_address))
t.daemon = self.daemon_threads
t.start()
ThreadingMixIn
class ThreadingTCPServer(ThreadingMixIn, TCPServer): pass # 还有比这更简单,更NB的类吗
ThreadingTCPServer
class BaseRequestHandler:
"""Base class for request handler classes.
This class is instantiated for each request to be handled. The
constructor sets the instance variables request, client_address
and server, and then calls the handle() method. To implement a
specific service, all you need to do is to derive a class which
defines a handle() method.
The handle() method can find the request as self.request, the
client address as self.client_address, and the server (in case it
needs access to per-server information) as self.server. Since a
separate instance is created for each request, the handle() method
can define arbitrary other instance variariables.
"""
def __init__(self, request, client_address, server):
self.request = request
self.client_address = client_address
self.server = server
self.setup()
try:
self.handle()
finally:
self.finish()
def setup(self):
pass
def handle(self):
pass
def finish(self):
pass
SocketServer.BaseRequestHandler
ForkingTCPServer
ForkingTCPServer和ThreadingTCPServer的使用和执行流程基本一致,只不过在内部分别为请求者建立 “线程” 和 “进程”。
基本使用:
#!/usr/bin/env python
# -*- coding:utf-8 -*-
import socketserver
class MyServer(socketserver.BaseRequestHandler):
def handle(self):
# print self.request,self.client_address,self.server
conn = self.request
conn.sendall(bytes('欢迎致电 10086,请输入1xxx,0转人工服务.',encoding="utf-8"))
Flag = True
while Flag:
data = conn.recv(1024)
data = str(data,encoding="utf-8")
if data == 'exit':
Flag = False
':
conn.sendall(bytes('通过可能会被录音.balabala一大推',encoding="utf-8"))
else:
conn.sendall(bytes('请重新输入.',encoding="utf-8"))
if __name__ == '__main__':
server = socketserver.ForkingTCPServer(('127.0.0.1',8009),MyServer)
server.serve_forever()
多进程socket服务器
客户端不需要修改。所有的变化都是在服务器端。以上ForkingTCPServer只是将 ThreadingTCPServer 实例中的代码:
server = socketserver.ThreadingTCPServer(('127.0.0.1',8009),MyRequestHandler)
变更为:
server = socketserver.ForkingTCPServer(('127.0.0.1',8009),MyRequestHandler)
python网络编程socket /socketserver的更多相关文章
- Day07 - Python 网络编程 Socket
1. Python 网络编程 Python 提供了两个级别访问网络服务: 低级别的网络服务支持基本的 Socket,它提供了标准的 BSD Sockets API,可以访问底层操作系统Socket接口 ...
- Python网络编程socket
网络编程之socket 看到本篇文章的题目是不是很疑惑,what is this?,不要着急,但是记住一说网络编程,你就想socket,socket是实现网络编程的工具,那么什么是socket,什么是 ...
- python网络编程-socket编程
一.服务端和客户端 BS架构 (腾讯通软件:server+client) CS架构 (web网站) C/S架构与socket的关系: 我们学习socket就是为了完成C/S架构的开发 二.OSI七层 ...
- python --- 网络编程Socket
网络编程 定义:所为网络编程即是对信息的发送和接收. 主要工作: (1)发送端:将信息以规定的协议组装成数据包. (2)接收端:对收到的数据包解析,以提取所需要的信息. Socket:两个在网络上的程 ...
- Python网络编程-Socket简单通信(及python实现远程文件发送)
学习python中使用python进行网络编程,编写简单的客户端和服务器端进行通信,大部分内容来源于网络教程,这里进行总结供以后查阅. 先介绍下TCP的三次握手: 1,简单的发送消息: 服务器端: i ...
- Day10 Python网络编程 Socket编程
一.客户端/服务器架构 1.C/S架构,包括: 1.硬件C/S架构(打印机) 2.软件C/S架构(web服务)[QQ,SSH,MySQL,FTP] 2.C/S架构与socket的关系: 我们学习soc ...
- Python 网络编程——socket
一 客户端/服务器架构 客户端(Client)服务器(Server)架构,即C/S架构,包括 1.硬件C/S架构(打印机) 2.软件C/S架构(web服务) 理想/目标状态—— 最常用的软件服务器是 ...
- Python网络编程—socket(二)
http://www.cnblogs.com/phennry/p/5645369.html 接着上篇博客我们继续介绍socket网络编程,今天主要介绍的内容:IO多路复用.多线程.补充知识点. 一.I ...
- Python网络编程—socket(一)
从今天开始python基础就介绍完毕了,下面我们将进阶到socket网络编程的介绍,那么socket是什么呢?我们带着这个问题开始今天的介绍: 一.socket初探 socket通常也称作" ...
随机推荐
- cer pfx格式数字证书区别
作为文件形式存在的证书一般有这几种格式: 1.带有私钥的证书 由Public Key Cryptography Standards #12,PKCS#12标准定义,包含了公钥和私钥的二进制格式的证书形 ...
- java目录
1. 在jsp文件或Servlet中,可以通过getServletContext().getRealPath("/")来获取项目根目录的绝对路径. 2. Java桌面程序中,可以通 ...
- IntelliJ IDEA + Maven环境编写第一个hadoop程序
1. 新建IntelliJ下的maven项目 点击File->New->Project,在弹出的对话框中选择Maven,JDK选择你自己安装的版本,点击Next 2. 填写Maven的Gr ...
- ECShop商品详细页 实现尺码颜色关联显示库存数量
效果如下: 要开模板文件 goods.dwt 把选择尺码跟颜色的代码替换成如下,(不同模板代码可能不一样,对照去替换) <!-- {foreach from=$spec.values item ...
- .net微信公众号开发——基础接口
作者:王先荣 本文讲述微信公众号开发中基础接口的使用,包括以下内容: (1)获取许可令牌(AccessToken): (2)获取微信服务器地址: (3)上传.下载多媒体文件: ...
- IT部门能力评估...
IT运行成本和变化成本越来越高,IT部门是否上了一些对企业无价值的系统,是否充分利用了已有系统的价值? 随 着IT应用不断深入,庞大的企业IT系统日积月累,各种隐患渐渐显露.IT系统变得越来越复杂,运 ...
- 老鼠跑猫叫主人惊醒c++观察者模式实现
这个题目算是比较经典的观察者模式了,老鼠作为一个Subject,主动发出跑的动作,紧跟着猫由于老鼠的跑而发出叫声,主人也被惊醒,在这里猫跟主人都是被动的,是观察者角色,代码实现如下: class CS ...
- Hybris电商方案介绍(企业全渠道) B2B B2C O2O建设
1). 什么是Hybris: hybris software成立于1997年,2013年与SAP整合,成为SAP旗下的一份子,提供全渠道客户互动与商务解决方案,该解决方案能够为各机构提供客户的实时背景 ...
- 在Unity3D的网络游戏中实现资源动态加载
用Unity3D制作基于web的网络游戏,不可避免的会用到一个技术-资源动态加载.比如想加载一个大场景的资源,不应该在游戏的开始让用户长时间等待全部资源的加载完毕.应该优先加载用户附近的场景资源,在游 ...
- [论文笔记] Legacy Application Migration to the Cloud: Practicability and Methodology (SERVICES, 2012)
Quang Hieu Vu, Rasool Asal: Legacy Application Migration to the Cloud: Practicability and Methodolog ...