【迁移学习】2010-A Survey on Transfer Learning

简介:
一个例子:
关于照片的情感分析.
源:比如你之前已经搜集了大量N种类型物品的图片进行了大量的人工标记(label),耗费了巨大的人力物力,构建了源情感分类器(即输入一张照片,可以分析出照片的情感).注:这里的情感不是指人物的情感,而是指照片中传达出来的情感,比如这张照片是积极的还是消极的.
目标:因为不同类型的物品,他们在源数据集中的分布也是不同的,所以为了维护一个很好的分类器性能,经常需要增加新的物品.传统的方式是搜集大量N+1号物品的照片进行大量的人工标记.建立模型.而迁移学习要做的是借鉴之前已经训练好的针对N中类型的分类器,来训练这个N+1号分类器.这样就节省了大量的人工标注的成本.
与传统进行比较:

几个概念:
(1)domain D:
包含一个特征空间X和一个边缘概率分布P(X)

如果两个域不同,那么他们可能有不同的特征空间和边缘概率分布.
(2)task T:
给定一个域D,一个task包含两部分:一个标记空间y和一个目标预测函数f().

f()可以用于预测一个新的instance x的label.f(x)可以表示为
迁移学习:给定一个源域DS和一个学习任务(task)TS,一个目标域DT和一个目标学习任务TT.迁移学习旨在利用DS和TS中的knowledge来提高目标预测函数f()在DT中的性能,其中DS≠DT或TS≠TT.
几个问题:
(1)迁移什么?
什么样的knowledge可以拿来迁移? 答:源域和目标域有相关性的才可以拿来迁移.

可以发现,我们把迁移学习的learning settings分为3类:
inductive transfer learning(归纳迁移学习), transductive transfer learning(直推式迁移学习), and unsupervised transfer learning(无监督迁移学习).

a.inductive transfer learning(归纳迁移学习)
研究较多
分为两类:
第一类:
inductive transfer learning:通过把knowledge从源task迁移到目标task,以此在目标task中取得高性能
multitask learning : 同时学习目标和源task
第二类:
源域和目标域的标记空间不同
b.transductive transfer learning(直推式迁移学习)
c.unsupervised transfer learning(无监督迁移学习)
研究较少



(2)怎么迁移?
(3)什么时候迁移?
inductive transfer learning(归纳迁移学习)
定义:给定一个源域DS和一个学习任务TS,一个目标域DT和一个学习任务TT.归纳迁移学习旨在通过使用DS和TS中的知识来提高目标预测函数的性能,其中TS≠TT.
目标域中需要少量的标记好的数据作为训练集.
(1)迁移instances中的knowledge
尽管源域中并非所有数据都可以被利用,但是,还是可以提取出其中的部分有标记的数据用于目标域.
(2)迁移feature representative中的knowledge
目的:找到好的特征代表,以此来减小源域与目标域中的差异.不同的源域数据类型,找到这些好的特征代表的策略也是不同的.
如果源域中有大量有效的带标记的数据,监督学习方法可以用于构建一个特征代表.
如果没有,则采用无监督学习方法来构造特征代表.
(3)迁移Parameters中的knowledge
有相关的task的不同模型之间应该共享一些参数或超参数的先验分布.
不同的域,参数不同.在目标域中,损失函数需要设定更大的权重.
(4)迁移Relational中的knowledge
比如数据网和社会网络.尝试将源域中的relationship转换到目标域中.
方法: statistical relational learning techniques
transductive transfer learning(直推式迁移学习)
源task和目标task是一样的,域不同.
利用部分目标数据来获得边缘概率.
定义:给定一个源域DS和相应的学习taskTS,一个目标域DT和相应的学习task.直推式学习旨在提高DT中的目标预测函数f(),利用DS和TS中的knowledge.其中DS≠DT且TS=TT.此外,训练时需要一些无标记的目标域数据.
(1)迁移instances中的knowledge
方法:重要性抽样:通过最小化期望风险来学习到模型中的最优参数
(2)迁移feature representative中的knowledge
利用目标域中的无标记数据来提取一些相关的特征,以此来减小域的差异性.
unsupervised transfer learning(无监督迁移学习)
定义:给定一个源域DS和相应的学习taskTS,一个目标域DT和相应的学习task.直推式学习旨在提高DT中的目标预测函数f(),利用DS和TS中的knowledge.其中TS≠TT且YS和YT并不明显.
在源域和目的域中都没有标记的数据.
(1)迁移feature representative中的knowledge
以自学习聚类(self-taught clustering)为例,旨在通过源域中大量的无标记的数据,在目标域中对少量的无标记的数据进行聚类,
迁移学习的边界和消极迁移学习
如果两个域之间没有半毛钱关系,那么这种迁移的效果会很差.
迁移学习的应用
- 自然语言处理
- 情绪分类问题
- 图片分类问题
- wifi定位
迁移学习的几个数据集和工具
S
【迁移学习】2010-A Survey on Transfer Learning的更多相关文章
- 《A Survey on Transfer Learning》迁移学习研究综述 翻译
迁移学习研究综述 Sinno Jialin Pan and Qiang Yang,Fellow, IEEE 摘要: 在许多机器学习和数据挖掘算法中,一个重要的假设就是目前的训练数据和将来的训练数据 ...
- 最新小样本学习综述 A Survey on Few-Shot Learning | 四大模型Multitask Learning、Embedding Learning、External Memory…
目录 原文链接: 小样本学习与智能前沿 01 Multitask Learning 01.1 Parameter Sharing 01.2 Parameter Tying. 02 Embedding ...
- Generalizing from a Few Examples: A Survey on Few-Shot Learning 小样本学习最新综述 | 三大数据增强方法
目录 原文链接:小样本学习与智能前沿 01 Transforming Samples from Dtrain 02 Transforming Samples from a Weakly Labeled ...
- Google Tensorflow 迁移学习 Inception-v3
附上代码加数据地址 https://github.com/Liuyubao/transfer-learning ,欢迎参考. 一.Inception-V3模型 1.1 详细了解模型可参考以下论文: [ ...
- A Gentle Introduction to Transfer Learning for Deep Learning | 迁移学习
by Jason Brownlee on December 20, 2017 in Better Deep Learning Transfer learning is a machine learni ...
- 小样本学习最新综述 A Survey on Few-shot Learning | Introduction and Overview
目录 01 Introduction Bridging this gap between AI and humans is an important direction. FSL can also h ...
- 基于深度学习和迁移学习的识花实践——利用 VGG16 的深度网络结构中的五轮卷积网络层和池化层,对每张图片得到一个 4096 维的特征向量,然后我们直接用这个特征向量替代原来的图片,再加若干层全连接的神经网络,对花朵数据集进行训练(属于模型迁移)
基于深度学习和迁移学习的识花实践(转) 深度学习是人工智能领域近年来最火热的话题之一,但是对于个人来说,以往想要玩转深度学习除了要具备高超的编程技巧,还需要有海量的数据和强劲的硬件.不过 Tens ...
- AI小白必读:深度学习、迁移学习、强化学习别再傻傻分不清
摘要:诸多关于人工智能的流行词汇萦绕在我们耳边,比如深度学习 (Deep Learning).强化学习 (Reinforcement Learning).迁移学习 (Transfer Learning ...
- transfer learning
https://github.com/jindongwang/transferlearning ftp://ftp.cs.wisc.edu/machine-learning/shavlik-group ...
随机推荐
- C语言实现二叉树-03版
我们亲爱的项目经理真是有创意,他说你给我写得二叉树挺好的: 功能还算可以:插入节点,能够删除节点: 可是有时候我们只是需要查找树的某个节点是否存在: 所以我希望你能够给我一个find功能: 还有就是, ...
- Atitit.web三大编程模型 Web Page Web Forms 和 MVC
Atitit.web三大编程模型 Web Page Web Forms 和 MVC 1. 编程模型是 Web Forms 和 MVC (Model, View, Controller). 2. ...
- Atitit. 提升开发效率与质量DSL ( 3) ----实现DSL的方式总结
Atitit. 提升开发效率与质量DSL ( 3) ----实现DSL的方式总结 1. 管道抽象 1 2. 层次结构抽象(json,xml etc) 1 3. 异步抽象promise 1 4. Ide ...
- HTML+CSS小实战案例
HTML+CSS小实战案例 登录界面的美化,综合最近所学进行练习 网页设计先布局,搭建好大框架,然后进行填充,完成页面布局 <html> <head> <meta htt ...
- Maven学习总结(九)——使用Nexus搭建Maven私服
一.搭建nexus私服的目的 为什么要搭建nexus私服,原因很简单,有些公司都不提供外网给项目组人员,因此就不能使用maven访问远程的仓库地址,所以很有必要在局域网里找一台有外网权限的机器,搭建n ...
- 通过ReentrantLock源代码分析AbstractQueuedSynchronizer独占模式
1. 重入锁的概念与作用 reentrant 锁意味着什么呢?简单来说,它有一个与获取锁相关的计数器,如果已占有锁的某个线程再次获取锁,那么lock方法中将计数器就加1后就会立刻返回.当释 ...
- 携程Android App插件化和动态加载实践
携程Android App的插件化和动态加载框架已上线半年,经历了初期的探索和持续的打磨优化,新框架和工程配置经受住了生产实践的考验.本文将详细介绍Android平台插件式开发和动态加载技术的原理和实 ...
- DRAM 内存介绍(三)
参考资料:http://www.anandtech.com/show/3851/everything-you-always-wanted-to-know-about-sdram-memory-but- ...
- Android composite adb interface
我的平板连上电脑后,在eclipse的DDMS中查看不到.很奇怪以前不会,我以为在进程中有其他的adb.exe冲突.查看任务管理器没有看到其他adb.exe进程.然后重启eclipse也不用,重启电脑 ...
- SFTP+OpenSSH+ChrootDirectory设置
账户设置 SFTP的账户直接使用Linux操作系统账户,我们可以用useradd命令来创建账户. 首先建立3个要管理的目录: 1 2 3 mkdir /home/sftp/homepage mkd ...