对图像进行形态学变换。变换对象一般为灰度图或二值图,功能函数放在morphology子模块内。

1、膨胀(dilation)

原理:一般对二值图像进行操作。找到像素值为1的点,将它的邻近像素点都设置成这个值。1值表示白,0值表示黑,因此膨胀操作可以扩大白色值范围,压缩黑色值范围。一般用来扩充边缘或填充小的孔洞。

功能函数:skimage.morphology.dilation(imageselem=None)

selem表示结构元素,用于设定局部区域的形状和大小。

from skimage import data
import skimage.morphology as sm
import matplotlib.pyplot as plt
img=data.checkerboard()
dst1=sm.dilation(img,sm.square(5)) #用边长为5的正方形滤波器进行膨胀滤波
dst2=sm.dilation(img,sm.square(15)) #用边长为15的正方形滤波器进行膨胀滤波 plt.figure('morphology',figsize=(8,8))
plt.subplot(131)
plt.title('origin image')
plt.imshow(img,plt.cm.gray) plt.subplot(132)
plt.title('morphological image')
plt.imshow(dst1,plt.cm.gray) plt.subplot(133)
plt.title('morphological image')
plt.imshow(dst2,plt.cm.gray)

分别用边长为5或15的正方形滤波器对棋盘图片进行膨胀操作,结果如下:

可见滤波器的大小,对操作结果的影响非常大。一般设置为奇数。

除了正方形的滤波器外,滤波器的形状还有一些,现列举如下:

morphology.square: 正方形

morphology.disk:  平面圆形

morphology.ball: 球形

morphology.cube: 立方体形

morphology.diamond: 钻石形

morphology.rectangle: 矩形

morphology.star: 星形

morphology.octagon: 八角形

morphology.octahedron: 八面体

注意,如果处理图像为二值图像(只有0和1两个值),则可以调用:

skimage.morphology.binary_dilation(image, selem=None)

用此函数比处理灰度图像要快。

2、腐蚀(erosion)

函数:skimage.morphology.erosion(imageselem=None)

selem表示结构元素,用于设定局部区域的形状和大小。

和膨胀相反的操作,将0值扩充到邻近像素。扩大黑色部分,减小白色部分。可用来提取骨干信息,去掉毛刺,去掉孤立的像素。

from skimage import data
import skimage.morphology as sm
import matplotlib.pyplot as plt
img=data.checkerboard()
dst1=sm.erosion(img,sm.square(5)) #用边长为5的正方形滤波器进行膨胀滤波
dst2=sm.erosion(img,sm.square(25)) #用边长为25的正方形滤波器进行膨胀滤波 plt.figure('morphology',figsize=(8,8))
plt.subplot(131)
plt.title('origin image')
plt.imshow(img,plt.cm.gray) plt.subplot(132)
plt.title('morphological image')
plt.imshow(dst1,plt.cm.gray) plt.subplot(133)
plt.title('morphological image')
plt.imshow(dst2,plt.cm.gray)

注意,如果处理图像为二值图像(只有0和1两个值),则可以调用:

skimage.morphology.binary_erosion(image, selem=None)

用此函数比处理灰度图像要快。

3、开运算(opening)

函数:skimage.morphology.openning(imageselem=None)

selem表示结构元素,用于设定局部区域的形状和大小。

先腐蚀再膨胀,可以消除小物体或小斑块。

from skimage import io,color
import skimage.morphology as sm
import matplotlib.pyplot as plt
img=color.rgb2gray(io.imread('d:/pic/mor.png'))
dst=sm.opening(img,sm.disk(9)) #用边长为9的圆形滤波器进行膨胀滤波 plt.figure('morphology',figsize=(8,8))
plt.subplot(121)
plt.title('origin image')
plt.imshow(img,plt.cm.gray)
plt.axis('off') plt.subplot(122)
plt.title('morphological image')
plt.imshow(dst,plt.cm.gray)
plt.axis('off')

注意,如果处理图像为二值图像(只有0和1两个值),则可以调用:

skimage.morphology.binary_opening(image, selem=None)

用此函数比处理灰度图像要快。

4、闭运算(closing)

函数:skimage.morphology.closing(imageselem=None)

selem表示结构元素,用于设定局部区域的形状和大小。

先膨胀再腐蚀,可用来填充孔洞。

from skimage import io,color
import skimage.morphology as sm
import matplotlib.pyplot as plt
img=color.rgb2gray(io.imread('d:/pic/mor.png'))
dst=sm.closing(img,sm.disk(9)) #用边长为5的圆形滤波器进行膨胀滤波 plt.figure('morphology',figsize=(8,8))
plt.subplot(121)
plt.title('origin image')
plt.imshow(img,plt.cm.gray)
plt.axis('off') plt.subplot(122)
plt.title('morphological image')
plt.imshow(dst,plt.cm.gray)
plt.axis('off')

注意,如果处理图像为二值图像(只有0和1两个值),则可以调用:

skimage.morphology.binary_closing(image, selem=None)

用此函数比处理灰度图像要快。

5、白帽(white-tophat)

函数:skimage.morphology.white_tophat(imageselem=None)

selem表示结构元素,用于设定局部区域的形状和大小。

将原图像减去它的开运算值,返回比结构化元素小的白点

from skimage import io,color
import skimage.morphology as sm
import matplotlib.pyplot as plt
img=color.rgb2gray(io.imread('d:/pic/mor.png'))
dst=sm.white_tophat(img,sm.square(21)) plt.figure('morphology',figsize=(8,8))
plt.subplot(121)
plt.title('origin image')
plt.imshow(img,plt.cm.gray)
plt.axis('off') plt.subplot(122)
plt.title('morphological image')
plt.imshow(dst,plt.cm.gray)
plt.axis('off')

6、黑帽(black-tophat)

函数:skimage.morphology.black_tophat(imageselem=None)

selem表示结构元素,用于设定局部区域的形状和大小。

将原图像减去它的闭运算值,返回比结构化元素小的黑点,且将这些黑点反色。

from skimage import io,color
import skimage.morphology as sm
import matplotlib.pyplot as plt
img=color.rgb2gray(io.imread('d:/pic/mor.png'))
dst=sm.black_tophat(img,sm.square(21)) plt.figure('morphology',figsize=(8,8))
plt.subplot(121)
plt.title('origin image')
plt.imshow(img,plt.cm.gray)
plt.axis('off') plt.subplot(122)
plt.title('morphological image')
plt.imshow(dst,plt.cm.gray)
plt.axis('off')

python数字图像处理(13):基本形态学滤波的更多相关文章

  1. python数字图像处理(四) 频率域滤波

    import matplotlib.pyplot as plt import numpy as np import cv2 %matplotlib inline 首先读入这次需要使用的图像 img = ...

  2. 「转」python数字图像处理(18):高级形态学处理

    python数字图像处理(18):高级形态学处理   形态学处理,除了最基本的膨胀.腐蚀.开/闭运算.黑/白帽处理外,还有一些更高级的运用,如凸包,连通区域标记,删除小块区域等. 1.凸包 凸包是指一 ...

  3. python数字图像处理(17):边缘与轮廓

    在前面的python数字图像处理(10):图像简单滤波 中,我们已经讲解了很多算子用来检测边缘,其中用得最多的canny算子边缘检测. 本篇我们讲解一些其它方法来检测轮廓. 1.查找轮廓(find_c ...

  4. python数字图像处理(1):环境安装与配置

    一提到数字图像处理编程,可能大多数人就会想到matlab,但matlab也有自身的缺点: 1.不开源,价格贵 2.软件容量大.一般3G以上,高版本甚至达5G以上. 3.只能做研究,不易转化成软件. 因 ...

  5. 初始----python数字图像处理--:环境安装与配置

    一提到数字图像处理编程,可能大多数人就会想到matlab,但matlab也有自身的缺点: 1.不开源,价格贵 2.软件容量大.一般3G以上,高版本甚至达5G以上. 3.只能做研究,不易转化成软件. 因 ...

  6. Win8 Metro(C#)数字图像处理--2.65形态学轮廓提取算法

    原文:Win8 Metro(C#)数字图像处理--2.65形态学轮廓提取算法  [函数名称]   形态学轮廓提取函数       WriteableBitmap Morcontourextract ...

  7. python数字图像处理(18):高级形态学处理

    形态学处理,除了最基本的膨胀.腐蚀.开/闭运算.黑/白帽处理外,还有一些更高级的运用,如凸包,连通区域标记,删除小块区域等. 1.凸包 凸包是指一个凸多边形,这个凸多边形将图片中所有的白色像素点都包含 ...

  8. python数字图像处理(14):高级滤波

    本文提供更多更强大的滤波方法,这些方法放在filters.rank子模块内. 这些方法需要用户自己设定滤波器的形状和大小,因此需要导入morphology模块来设定. 1.autolevel 这个词在 ...

  9. python数字图像处理(10):图像简单滤波

    对图像进行滤波,可以有两种效果:一种是平滑滤波,用来抑制噪声:另一种是微分算子,可以用来检测边缘和特征提取. skimage库中通过filters模块进行滤波操作. 1.sobel算子 sobel算子 ...

随机推荐

  1. C语言的判断语句

    // // main.c // homeWork1222 //// #include <stdio.h> int main(int argc, const char * argv[]) { ...

  2. Android性能优化(一)

    Android性能优化典范 1.大多数用户感知到的卡顿等性能问题的最主要根源都是因为渲染性能. 从设计师的角度,他们希望App能够有更多的动画,图片等时尚元素来实现流畅的用户体验. 但是Android ...

  3. 敏捷软件开发:原则、模式与实践——第10章 LSP:Liskov替换原则

    第10章 LSP:Liskov替换原则    Liskov替换原则:子类型(subtype)必须能够替换掉它们的基类型(base type). 10.1 违反LSP的情形 10.1.1 简单例子 对L ...

  4. JavaScript Patterns 2.9 Coding Conventions

    It’s important to establish and follow coding conventions—they make your code consistent, predictabl ...

  5. 如何在Java Filter 中注入 Service

    在项目中遇到一个问题,在 Filter中注入 Serivce失败,注入的service始终为null.如下所示: public class WeiXinFilter implements Filter ...

  6. JS对URL字符串进行编码/解码分析

    一.为什么要进行js编码和解码? 只有字母和数字[0-9a-zA-Z].一些特殊符号“$-_.+!*'(),”[不包括双引号].以及某些保留字,才可以不经过编码直接用于URL. 出现的情况: 网址路径 ...

  7. Warning:mailcious javascript detected on this domain来由

    http://www.thenewslens.com/post/144232/ 这是原文介绍,可能国内要用网络加速器才能查看. 以下是国外的一些文档介绍:Cyberspace Administrati ...

  8. Linux命令的类型

    1.内建命令: 由shell程序自带的命令,最常见的有cd.pwd等. 使用type命令即可查看命令属于哪种,比如: #type cd cd is a shell builtin ————>看到 ...

  9. 迅为4412开发板Linux驱动教程之GPIO的初始化

    视频下载地址:http://pan.baidu.com/s/1c06oiti GPIO的初始化 • 在内核源码目录下使用命令“ls drivers/gpio/*.o”,可以看到“gpio-exynos ...

  10. 【分享】iTOP-4412开发板使用之初体验[多图]

    近期入手了4412开发板,配的7寸屏和WIFI模块,GPS模块,下面晒个照片介绍一下,手机拍摄图片有点模糊,实物很精致,是我所见过最好的板子.b( ̄▽ ̄)d 预装的Android4.0.3系统,5点以 ...