Antenna Placement
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 5645 Accepted: 2825

Description

The Global Aerial Research Centre has been allotted the task of building the fifth generation of mobile phone nets in Sweden. The most striking reason why they got the job, is their discovery of a new, highly noise resistant, antenna. It is called 4DAir, and comes in four types. Each type can only transmit and receive signals in a direction aligned with a (slightly skewed) latitudinal and longitudinal grid, because of the interacting electromagnetic field of the earth. The four types correspond to antennas operating in the directions north, west, south, and east, respectively. Below is an example picture of places of interest, depicted by twelve small rings, and nine 4DAir antennas depicted by ellipses covering them. 
 
Obviously, it is desirable to use as few antennas as possible, but still provide coverage for each place of interest. We model the problem as follows: Let A be a rectangular matrix describing the surface of Sweden, where an entry of A either is a point of interest, which must be covered by at least one antenna, or empty space. Antennas can only be positioned at an entry in A. When an antenna is placed at row r and column c, this entry is considered covered, but also one of the neighbouring entries (c+1,r),(c,r+1),(c-1,r), or (c,r-1), is covered depending on the type chosen for this particular antenna. What is the least number of antennas for which there exists a placement in A such that all points of interest are covered?

Input

On the first row of input is a single positive integer n, specifying the number of scenarios that follow. Each scenario begins with a row containing two positive integers h and w, with 1 <= h <= 40 and 0 < w <= 10. Thereafter is a matrix presented, describing the points of interest in Sweden in the form of h lines, each containing w characters from the set ['*','o']. A '*'-character symbolises a point of interest, whereas a 'o'-character represents open space.

Output

For each scenario, output the minimum number of antennas necessary to cover all '*'-entries in the scenario's matrix, on a row of its own.

Sample Input

2
7 9
ooo**oooo
**oo*ooo*
o*oo**o**
ooooooooo
*******oo
o*o*oo*oo
*******oo
10 1
*
*
*
o
*
*
*
*
*
*

Sample Output

17
5

Source

Svenskt M?sterskap i Programmering/Norgesmesterskapet 2001

#include <iostream>
#include <cstdio>
#include <cstring>
#include <vector>

using namespace std;

const int MaxV=500;
char mp[50][50];
int dir_x[4]={0,0,1,-1};
int dir_y[4]={1,-1,0,0};
int h,w;

bool inmap(int x,int y)
{
    if(x>=0&&x<h&&y>=0&&y<w)
        return true;
    return false;
}

struct Edge
{
    int to,next;
}E[MaxV*MaxV];

int Adj[MaxV],Size;

void Init()
{
    Size=0;
    memset(Adj,-1,sizeof(Adj));
}

void Add_Edge(int u,int v)
{
    E[Size].to=v;
    E[Size].next=Adj;
    Adj=Size++;
}
bool use[MaxV*MaxV];
int from[MaxV*MaxV];

bool match(int u)
{
    for(int i=Adj;~i;i=E.next)
    {
        int v=E.to;
        if(!use[v])
        {
            use[v]=true;
            if(from[v]==-1||match(from[v]))
            {
                from[v]=u;
                return true;
            }
        }
    }
    return false;
}

int main()
{
    int T;
    cin>>T;
    while(T--)
    {
        cin>>h>>w;
        Init();  vector<int> v;
        for(int i=0;i<h;i++)
        {
            cin>>mp;
        }
        for(int i=0;i<h;i++)
        {
            for(int j=0;j<w;j++)
            {
                if(mp[j]=='*')
                {
                    v.push_back(i*w+j);
                    for(int k=0;k<4;k++)
                    {
                        int x=i+dir_x[k];
                        int y=j+dir_y[k];
                        if(inmap(x,y)&&mp[x][y]=='*')
                        {
                         //   printf("(%d,%d)----->(%d,%d)\n",i,j,x,y);
                            Add_Edge(i*w+j,x*w+y);
                        }
                    }
                }
            }
        }
        int tot=0;
        memset(from,-1,sizeof(from));
        for(int i=0;i<v.size();i++)
        {
            int u=v;
            memset(use,false,sizeof(use));
            if(match(u)) tot++;
        }
        printf("%d\n",v.size()-tot/2);
    }
    return 0;
}

* This source code was highlighted by YcdoiT. ( style: Codeblocks )

POJ 3020 Antenna Placement的更多相关文章

  1. 二分图最大匹配(匈牙利算法) POJ 3020 Antenna Placement

    题目传送门 /* 题意:*的点占据后能顺带占据四个方向的一个*,问最少要占据多少个 匈牙利算法:按坐标奇偶性把*分为两个集合,那么除了匹配的其中一方是顺带占据外,其他都要占据 */ #include ...

  2. poj 3020 Antenna Placement(最小路径覆盖 + 构图)

    http://poj.org/problem?id=3020 Antenna Placement Time Limit: 1000MS   Memory Limit: 65536K Total Sub ...

  3. POJ 3020 Antenna Placement 【最小边覆盖】

    传送门:http://poj.org/problem?id=3020 Antenna Placement Time Limit: 1000MS   Memory Limit: 65536K Total ...

  4. POJ 3020 Antenna Placement【二分匹配——最小路径覆盖】

    链接: http://poj.org/problem?id=3020 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22010#probl ...

  5. POJ 3020——Antenna Placement——————【 最小路径覆盖、奇偶性建图】

    Antenna Placement Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u S ...

  6. poj 3020 Antenna Placement (最小路径覆盖)

    链接:poj 3020 题意:一个矩形中,有n个城市'*'.'o'表示空地,如今这n个城市都要覆盖无线,若放置一个基站, 那么它至多能够覆盖本身和相邻的一个城市,求至少放置多少个基站才干使得全部的城市 ...

  7. POJ 3020 Antenna Placement 最大匹配

    Antenna Placement Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6445   Accepted: 3182 ...

  8. poj 3020 Antenna Placement(二分无向图 匈牙利)

    Antenna Placement Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6438   Accepted: 3176 ...

  9. POJ 3020 Antenna Placement 匈牙利算法,最大流解法 难度:1

    http://poj.org/problem?id=3020 #include <cstdio> #include <cstring> #include <vector& ...

随机推荐

  1. Unity导出的Xcode项目,iOS端管理摄像头的方法

    Vuforia导出的工程中管理摄像头问题 在以前的篇幅中提到了unity端和iOS端的动态交互.现在出现了一个问题.因为设备上的摄像机是实例化过来的.并且是一个单例.unity虽然已经不再显示了.但是 ...

  2. SSRS用自定义对象绑定报表

    有一个报表的数据源是一个对象的List, 这个对象List中还有层级,其中还有其他的对象List,这样的层级有三层.其数据是从数据库中取出来的.其LINQ的操作太多了而且复杂,所以不太可 能从LINQ ...

  3. cryptdb中wrapper.lua的分析

    因为cryptDB是在mysql-proxy的基础上来实现了,可以看成是为mysql-proxy添加了新的.为mysql-proxy已经为开发人员提供了相应的接口.如果开发人员只需要通过lua脚本语言 ...

  4. Boostrap(4)

    1.按钮 <!doctype html> <html> <head> <meta charset="utf-8"> <titl ...

  5. CsharpThinking---代码契约CodeContract(八)

    代码契约(Code Contract):它并不是语言本身的新功能,而是一些额外的工具,帮助人们控制代码边界. 代码契约之于C#,就相当于诗词歌赋之于语言. --- C# in Depth 一,概述 1 ...

  6. Javascript基础系列之(七)函数(argument访问函数参数)

    argument是javascript中函数的一个特殊参数,例如下文,利用argument访问函数参数,判断函数是否执行 <script type="text/javascript&q ...

  7. angular的canvas画图例子

    angular的例子: <!DOCTYPE html> <html ng-app="APP"> <head> <meta charset= ...

  8. Moqui学习之 Step by Step OrderProcureToPayBasicFlow

    /** Get a service caller to call a service synchronously. */ //ServiceCallSync sync(); /** Map of na ...

  9. __weak typeof(self) weakSelf = self

    typeof(self) 是获取到self的类型,这样定义出的weakSelf就是和self一个类型的, 加上__weak是建立一个若引用,整句就是给self定义了一个若引用性质的替身;这个一般用在使 ...

  10. C#中File类的文件操作方法详解

    File类,是一个静态类,主要是来提供一些函数库用的.静态实用类,提供了很多静态的方法,支持对文件的基本操作,包括创建,拷贝,移动,删除和打开一个文件.File类方法的参量很多时候都是路径path.F ...