2118: 墨墨的等式

Time Limit: 10 Sec  Memory Limit: 259 MB
Submit: 1283  Solved: 496

Description

墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N、{an}、以及B的取值范围,求出有多少B可以使等式存在非负整数解。

Input

输入的第一行包含3个正整数,分别表示N、BMin、BMax分别表示数列的长度、B的下界、B的上界。输入的第二行包含N个整数,即数列{an}的值。

Output

输出一个整数,表示有多少b可以使等式存在非负整数解。

Sample Input

2 5 10
3 5

Sample Output

5

HINT

对于100%的数据,N≤12,0≤ai≤5*10^5,1≤BMin≤BMax≤10^12。

/*
一开始就没想到是个最短路。
题目可以这样变化一下:n个物品,可以用0-,正无穷,问[l,r]区间内有多少价值可以凑出来。
联系到最短路上面:
任选一个ai>0,如果一个价值k∗ai+x(0≤x<ai,k≥0)可以被凑出来,那么显然(k+1)∗ai+x,(k+2)∗ai+x,...都可以被凑出来(这样x的范围就是小于ai了)
显然如果我们对于每个x都找到最小的k满足k∗ai+x可以被凑出来,这个问题就解决了,如果满足凑出x的最小花费是大于b的,那么就不能在[l,r]区间内凑出mn*k+x,这个数了,否则的话,就计算[l,r]内有多少个可以凑出来。
最短路,spfa
时间复杂度O(n∗ai∗log2ai)
因为复杂度与ai有关,所以我们就选择最小的ai了,举个例子:当最小的ai等于1时,那么自然区间内的所有数都可以凑出来了。
*/
 /*网上的AC代码,我加了注解,注意把I64d改为lld*/
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<cmath> #define md
#define ll long long
#define inf 1000000000000000LL
#define eps 1e-8
#define N 500010
using namespace std;
int q[N];
ll dis[N];
bool vis[N];
int mn,n;
int a[];
void spfa()
{
int h=,w=,x,y; q[]=; vis[]=;/*第一个能凑出的数就是0*/
while (h!=w)
{
h++; if (h>mn+) h=; x=q[h];/*循环队列,取出队头的数*/
for (int i=;i<=n;i++)
{
y=(x+a[i])%mn;/*利用这个价值和其他价值组合所能达到的y,计算y的最小花费(因为只有计算最小花费),才能用mn凑出更多的满足区间条件的数*/
if (dis[y]>dis[x]+a[i])
{
dis[y]=dis[x]+a[i];
if (!vis[y])
{
vis[y]=;
w++; if (w>mn+) w=; q[w]=y;
}
}
}
vis[x]=;
}
} ll query(ll x)
{
ll ans=;
for (int i=;i<mn;i++)
if (dis[i]<=x) ans+=(x-dis[i])/mn+; /*计算有多少个k满足k*mn+i<=x,因为k>=0,所以还要加1*/
return ans;
} /*windows 用I64d linux 用lld*/
int main()
{
mn=(1e9);
ll L,R;
scanf("%d%I64d%I64d",&n,&L,&R);
for (int i=;i<=n;i++) { scanf("%d",&a[i]); if (a[i]==) { i--; n--; continue;} mn=min(mn,a[i]);}/*取出最小的an,但是不能为0,很好理解吧*/
for (int i=;i<mn;i++) dis[i]=inf;/*设达到每个k*mn+i(i<mn)的最小花费,所以数组dis中只有小于mn的i即可(*/
spfa();
printf("%I64d\n",query(R)-query(L-));
return ;
}
 /*
首先,答案=ans(Bmax)-ans(Bmin-1)//利用差分
找出a1到an中的最小值p,则如果可以构造出答案x,就可以构造出答案x+p
所以我们只需要对于每个q(0<=q<p),计算出最小的k,使k*p+q能够能够被构造出来,那么对于k’(k’>k) k’*p+q也能构造出来
所以对于每个q建一个点,对于每个ai,从q向(q+ai)%p连一条长度为ai的边,先跑一遍最短路,计算出得到每个q的最小花费,如果最小花费大于了Bmax,那么没有办法凑出了。否则就计算可以凑出多少个。 */
#define N 15
#define S 500010 //注意题目时5*1e5
#include<iostream>
using namespace std;
#include<cstdio>
#include<queue>
typedef long long ll;
ll L,R;
bool vis[S]={};
int n,mn=(<<)-,a[N];
ll dis[S];
void input()
{
cin>>n>>L>>R;
for(int i=;i<=n;++i)
{
scanf("%d",&a[i]);
if(a[i]==)
{
i--;n--;
continue;
}
mn=min(mn,a[i]);
}
}
void spfa()
{
queue<int>Q;
Q.push();
vis[]=true;
dis[]=;/*注意得到0的花费是0*/
int x,y;
while(!Q.empty())
{
x=Q.front();Q.pop();
vis[x]=false;
for(int i=;i<=n;++i)
{
y=(x+a[i])%mn;
if(dis[y]>dis[x]+a[i])
{
dis[y]=dis[x]+a[i];
if(!vis[y])
{
vis[y]=true;
Q.push(y);
}
}
}
}
}
ll query(ll x)
{
ll ans=;
for(int i=;i<mn;++i)/*别忘了从0开始循环,因为凑出的是0,可以全部用mn来凑*/
if(dis[i]<=x) ans+=(x-dis[i])/mn+;
return ans;
}
int main()
{
input();
for(int i=;i<mn;++i)
dis[i]=100000000000000000LL;//当赋值longlong的数时,要加后缀ll(大小写都可以)才可以,否则会出错的。
spfa();
cout<<query(R)-query(L-);
return ;
}

数论+spfa算法 bzoj 2118 墨墨的等式的更多相关文章

  1. 【BZOJ 2118】 墨墨的等式(Dijkstra)

    BZOJ2118 墨墨的等式 题链:http://www.lydsy.com/JudgeOnline/problem.php?id=2118 Description 墨墨突然对等式很感兴趣,他正在研究 ...

  2. 【BZOJ 2118】墨墨的等式

    http://www.lydsy.com/JudgeOnline/problem.php?id=2118 最短路就是为了找到最小的$x$满足$x=k×a_{min}+d,0≤d<a_{min}$ ...

  3. bzoj 2118: 墨墨的等式 spfa

    题目: 墨墨突然对等式很感兴趣,他正在研究\(a_1x_1+a_2y_2+ ... +a_nx_n=B\)存在非负整数解的条件,他要求你编写一个程序,给定\(N,\{a_n\}\)以及\(B\)的取值 ...

  4. bzoj 2118 墨墨的等式 - 图论最短路建模

    墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求出有多少B可以使等式存在非负整数解. Input ...

  5. 【BZOJ 2118】 2118: 墨墨的等式 (最短路)

    2118: 墨墨的等式 Description 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求 ...

  6. bzoj 2118: 墨墨的等式

    Description 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+-+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求出有多少B可以使等式存在 ...

  7. [图论训练]BZOJ 2118: 墨墨的等式 【最短路】

    Description 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求出有多少B可以使等式存在 ...

  8. BZOJ2118墨墨的等式[数论 最短路建模]

    2118: 墨墨的等式 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 1317  Solved: 504[Submit][Status][Discus ...

  9. BZOJ2118: 墨墨的等式(最短路 数论)

    题意 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求出有多少B可以使等式存在非负整数解. So ...

随机推荐

  1. 【Effective Java】2、构造参数过多的时候

    package cn.xf.cp.ch02.item2; /** * * 功能:当我们的构造参数有很多,超出可控范围的时候,用build模式 时间:下午8:25:05 文件:NutritionFact ...

  2. ServiceLocator是反模式

    关于ServiceLocator模式 http://www.cnblogs.com/hwade/archive/2011/01/30/CommonServiceLocator.html 为什么是Ant ...

  3. PHP控制前台弹出对话框

    应用场景: 微信授权登录过程中,需要用户确认,故衍生此需求: 相应的逻辑不放在前端的原因是,此部分逻辑属于偏功能业务,所以放在后端,方便统一管理. 解决办法: 通过php echo出javascrip ...

  4. JavaScript中instanceof运算符的用法以及和typeof的区别

    instanceof : 判断一个对象是否为某一数据类型,或一个变量是否为一个对象的实例:返回boolean类型栗子①: var aColors = ["red", "g ...

  5. 如何通过PowerShell在Visual Studio的Post-build中预热SharePoint站点

    问题现象 Visual Studio在开发SharePoint的时候,发布部署包后,首次打开及调试站点页面的时候会非常的慢 解决方案 使用PowerShell脚本,加载SharePoint插件后遍历所 ...

  6. Android 之 Intent(意图)

    Intent是 Android中重要的桥梁之一,它分为显式意图和隐式意图.接下来分别针对这两种意图进行讲解. 显式意图:通过指定一组数据或动作,激活应用内部的 activity:(相比隐式意图,此做法 ...

  7. Java从零开始学四十七(注解简述)

    一.Java中注解Annotation 什么是注解:用来描述数据的数据(元数据). Java代码里的特殊标记.它为代码中添加用Java程序无法表达的额外信息提供一种形式化的方法,使用我们可以在未来的某 ...

  8. Charles使用详情

    Charles各版本下载: Charles for Windows 32 bit Charles for Windows 64 bit Charles for linux Charles for Ma ...

  9. iOS-申请测试证书详解(多图原创)

    申请测试证书详解 前言 App开发和发布过程中证书基础知识:1. Certification(证书)证书是对电脑开发资格的认证,每个开发者帐号有一套,分为两种:1) Developer Certifi ...

  10. java异常 总结

    异常: 是什么?是对问题的描述,将问题进行对象的封装. 异常体系: Throwable |--Error |--Exception |--RuntimeException 异常体系的特点: 异常体系中 ...