51nod-1661 1661 黑板上的游戏(组合游戏)
题目链接:
1. Alice占有先手主动权。
2. 每个人可以选取一个大于1的数字擦去,并写上一个更小的数字,数字必须是整数,然后由对方进行下一次操作。
3. 如果擦去的数字是 x (x > 1) ,则写上的数字不能比 x/k 小,但是要比 x 小。这里的除法为有理数除法。
4. 不可以擦去任何一个数字 1 ,如果当前无法找到一个数字进行操作,则当前方输。
假设Alice和Bob都会选择最优的策略,请问Alice是否存在必胜的方案?
第一行两个空格隔开的正整数n和k,其中n表示数字的个数,k表示游戏的参数。
第二行n个空格隔开的正整数,其中第i个表示ai。
1 ≤ n ≤ 10^5, 2 ≤ k ≤ 10^18, 1 ≤ ai ≤ 10^18。
如果存在必胜方案,则输出“Alice i y”,其中i和y表示先手的一种能必胜的操作:将第i个数修改为y。
如果没有,则输出“Bob”表示后手必胜。
(输出不含引号)
4 2
2 3 3 3
Alice 2 2 题意: 思路: 可以参考LA5059,是它的加强版,也是先打表找规律,一个递归求sg值,还有就是要求找一个必胜操作,然后我就又打表找了一下,然后乱搞搞就过了; AC代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <bits/stdc++.h>
#include <stack>
#include <map> using namespace std; #define For(i,j,n) for(int i=j;i<=n;i++)
#define mst(ss,b) memset(ss,b,sizeof(ss)); typedef long long LL; template<class T> void read(T&num) {
char CH; bool F=false;
for(CH=getchar();CH<'0'||CH>'9';F= CH=='-',CH=getchar());
for(num=0;CH>='0'&&CH<='9';num=num*10+CH-'0',CH=getchar());
F && (num=-num);
}
int stk[70], tp;
template<class T> inline void print(T p) {
if(!p) { puts("0"); return; }
while(p) stk[++ tp] = p%10, p/=10;
while(tp) putchar(stk[tp--] + '0');
putchar('\n');
} const LL mod=1e9+7;
const double PI=acos(-1.0);
const int inf=1e9;
const int N=1e5+20;
const int maxn=1e4+220;
const double eps=1e-12; LL a[N],n,k,s[N];
LL sg(LL x)
{
if(x%k==1)return sg(x/k);
else
{
LL le=x/k;
if(le*k!=x)le++;
return x-le;
}
} int main()
{ read(n);read(k);
LL sum=0;
For(i,1,n)read(a[i]),s[i]=sg(a[i]),sum^=s[i];
double temp=k*1.0/(k*1.0-1);
if(sum)
{
printf("Alice ");
for(int i=n;i>=1;i--)
{
if(a[i]==1)continue;
sum^=s[i];
LL f=ceil(temp*sum);
LL le=a[i]/k;
if(le*k!=a[i])le++;
while(1)
{
if(f>=le&&f<a[i]&&sg(f)==sum)
{
printf("%d %lld\n",i,f);
return 0;
}
f=k*f+1;
if(f>a[i]||f<0)break;
}
sum^=s[i];
}
}
else cout<<"Bob"<<endl; return 0;
}
51nod-1661 1661 黑板上的游戏(组合游戏)的更多相关文章
- Nim游戏(组合游戏Combinatorial Games)
http://baike.baidu.com/view/1101962.htm?fr=aladdin Nim游戏是博弈论中最经典的模型(之一),它又有着十分简单的规则和无比优美的结论 Nim游戏是组合 ...
- Vijos P1196吃糖果游戏[组合游戏]
描述 Matrix67和Shadow正在做一个小游戏. 桌子上放着两堆糖果,Matrix67和Shadow轮流对这些糖果进行操作.在每一次操作中,操作者需要吃掉其中一堆糖果,并且把另一堆糖果分成两堆( ...
- Codeforces 918D MADMAX 图上dp 组合游戏
题目链接 题意 给定一个 \(DAG\),每个边的权值为一个字母.两人初始各占据一个顶点(可以重合),轮流移动(沿着一条边从一个顶点移动到另一个顶点),要求每次边上的权值 \(\geq\) 上一次的权 ...
- HDU 1536 S-Nim (组合游戏+SG函数)
题意:针对Nim博弈,给定上一个集合,然后下面有 m 个询问,每个询问有 x 堆石子 ,问你每次只能从某一个堆中取出 y 个石子,并且这个 y 必须属于给定的集合,问你先手胜还是负. 析:一个很简单的 ...
- 浅谈公平组合游戏IGC
浅谈公平组合游戏IGC IGC简介 一个游戏满足以下条件时被叫做IGC游戏 (前面三个字是自己YY的,不必在意) 竞争性:两名玩家交替行动. 公平性:游戏进程的任意时刻,可以执行的操作和操作者本人无关 ...
- 组合游戏 - SG函数和SG定理
在介绍SG函数和SG定理之前我们先介绍介绍必胜点与必败点吧. 必胜点和必败点的概念: P点:必败点,换而言之,就是谁处于此位置,则在双方操作正确的情况下必败. N点:必胜点 ...
- 博弈论题目总结(二)——SG组合游戏及变形
SG函数 为了更一般化博弈问题,我们引入SG函数 SG函数有如下性质: 1.如果某个状态SG函数值为0,则它后继的每个状态SG函数值都不为0 2.如果某个状态SG函数值不为0,则它至少存在一个后继的状 ...
- 【博弈论】组合游戏及SG函数浅析
目录 预备知识 普通的Nim游戏 SG函数 预备知识 公平组合游戏(ICG) 若一个游戏满足: 由两名玩家交替行动: 游戏中任意时刻,合法操作集合只取决于这个局面本身: 若轮到某位选手时,若该选手无合 ...
- (转载)VC/MFC 工具栏上动态添加组合框等控件的方法
引言 工具条作为大多数标准的Windows应用程序的 一个重要组成部分,使其成为促进人机界面友好的一个重要工具.通过工具条极大方便了用户对程序的操作,但是在由Microsoft Visual C++开 ...
随机推荐
- bzoj1146整体二分+树链剖分+树状数组
其实也没啥好说的 用树状数组可以O(logn)的查询 套一层整体二分就可以做到O(nlngn) 最后用树链剖分让序列上树 #include<cstdio> #include<cstr ...
- MyEclipse+Mysql (一)
MyEclipse连接Mysql数据库 准备工作:MyEclipse使用的是2013版,mysql Ver 14.14 Distrib 5.6.28 1.jar包的下载(jdbc驱动) 我 ...
- WPF下递归生成树形数据绑定到TreeView上
最终效果图:(用于学习类的效果 图片丑了点,看官莫怪) 新建窗体 然后在前端适当位置插入如下代码: <TreeView x:Name="> <TreeView.ItemTe ...
- 详解;(function ($,window,document,undefined){...})(jQuery,window,document);
1.代码最前面的分号,可以防止多个文件压缩合并以为其他文件最后一行语句没加分号,而引起合并后语法错误. 2.匿名函数(function(){})();:由于Javascript执行表达式是从圆括号里面 ...
- SQL SERVER – Attach mdf file without ldf file in Database
Background Story: One of my friends recently called up and asked me if I had spare time to look at h ...
- 关于ApplicationPoolIdentity
一直以来IIS中的网站默认都是以network service在运行,但是从IIS7开始,默认会以ApplicationPoolIdentity运行. 这个账户比较特殊,是一种虚拟帐户,你无法在计算机 ...
- [leetcode] Number of Islands
Number of Islands Given a 2d grid map of '1's (land) and '0's (water), count the number of islands. ...
- 递归练习(C语言)
本文地址:http://www.cnblogs.com/archimedes/p/recursive-practice.html,转载请注明源地址. 1.炮弹一样的球状物体,能够堆积成一个金字塔,在顶 ...
- iOS设计模式之代理模式
代理模式 基本理解 代理模式(Proxy),为其他对象提供一种代理以控制对这个对象的访问. 代理模式的应用 远程代理:就是为一个对象在不同的地址空间提供据不代表.这样可以隐藏一个对象存在于不同地址空间 ...
- iOS 删除 Main.storyboard 和 LaunchScreen.storyboard
第一步: 右键选中Main.storyboard —- delete —— Move to Trash LaunchScreen同理 第二步 点击工程名,就是最顶级目录 右侧出现general选项卡 ...