题目链接:

1661 黑板上的游戏

Alice和Bob在黑板上玩一个游戏,黑板上写了n个正整数a1, a2, ..., an,游戏的规则是这样的:
1. Alice占有先手主动权。
2. 每个人可以选取一个大于1的数字擦去,并写上一个更小的数字,数字必须是整数,然后由对方进行下一次操作。
3. 如果擦去的数字是 x (x > 1) ,则写上的数字不能比 x/k 小,但是要比 x 小。这里的除法为有理数除法。
4. 不可以擦去任何一个数字 1 ,如果当前无法找到一个数字进行操作,则当前方输。
假设Alice和Bob都会选择最优的策略,请问Alice是否存在必胜的方案?
Input
第一行两个空格隔开的正整数n和k,其中n表示数字的个数,k表示游戏的参数。
第二行n个空格隔开的正整数,其中第i个表示ai。
1 ≤ n ≤ 10^5, 2 ≤ k ≤ 10^18, 1 ≤ ai ≤ 10^18。
Output
如果存在必胜方案,则输出“Alice i y”,其中i和y表示先手的一种能必胜的操作:将第i个数修改为y。
如果没有,则输出“Bob”表示后手必胜。
(输出不含引号)
Input示例
4 2
2 3 3 3
Output示例
Alice 2 2

题意:

思路:

可以参考LA5059,是它的加强版,也是先打表找规律,一个递归求sg值,还有就是要求找一个必胜操作,然后我就又打表找了一下,然后乱搞搞就过了;

AC代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <bits/stdc++.h>
#include <stack>
#include <map> using namespace std; #define For(i,j,n) for(int i=j;i<=n;i++)
#define mst(ss,b) memset(ss,b,sizeof(ss)); typedef long long LL; template<class T> void read(T&num) {
char CH; bool F=false;
for(CH=getchar();CH<'0'||CH>'9';F= CH=='-',CH=getchar());
for(num=0;CH>='0'&&CH<='9';num=num*10+CH-'0',CH=getchar());
F && (num=-num);
}
int stk[70], tp;
template<class T> inline void print(T p) {
if(!p) { puts("0"); return; }
while(p) stk[++ tp] = p%10, p/=10;
while(tp) putchar(stk[tp--] + '0');
putchar('\n');
} const LL mod=1e9+7;
const double PI=acos(-1.0);
const int inf=1e9;
const int N=1e5+20;
const int maxn=1e4+220;
const double eps=1e-12; LL a[N],n,k,s[N];
LL sg(LL x)
{
if(x%k==1)return sg(x/k);
else
{
LL le=x/k;
if(le*k!=x)le++;
return x-le;
}
} int main()
{ read(n);read(k);
LL sum=0;
For(i,1,n)read(a[i]),s[i]=sg(a[i]),sum^=s[i];
double temp=k*1.0/(k*1.0-1);
if(sum)
{
printf("Alice ");
for(int i=n;i>=1;i--)
{
if(a[i]==1)continue;
sum^=s[i];
LL f=ceil(temp*sum);
LL le=a[i]/k;
if(le*k!=a[i])le++;
while(1)
{
if(f>=le&&f<a[i]&&sg(f)==sum)
{
printf("%d %lld\n",i,f);
return 0;
}
f=k*f+1;
if(f>a[i]||f<0)break;
}
sum^=s[i];
}
}
else cout<<"Bob"<<endl; return 0;
}

  

  

51nod-1661 1661 黑板上的游戏(组合游戏)的更多相关文章

  1. Nim游戏(组合游戏Combinatorial Games)

    http://baike.baidu.com/view/1101962.htm?fr=aladdin Nim游戏是博弈论中最经典的模型(之一),它又有着十分简单的规则和无比优美的结论 Nim游戏是组合 ...

  2. Vijos P1196吃糖果游戏[组合游戏]

    描述 Matrix67和Shadow正在做一个小游戏. 桌子上放着两堆糖果,Matrix67和Shadow轮流对这些糖果进行操作.在每一次操作中,操作者需要吃掉其中一堆糖果,并且把另一堆糖果分成两堆( ...

  3. Codeforces 918D MADMAX 图上dp 组合游戏

    题目链接 题意 给定一个 \(DAG\),每个边的权值为一个字母.两人初始各占据一个顶点(可以重合),轮流移动(沿着一条边从一个顶点移动到另一个顶点),要求每次边上的权值 \(\geq\) 上一次的权 ...

  4. HDU 1536 S-Nim (组合游戏+SG函数)

    题意:针对Nim博弈,给定上一个集合,然后下面有 m 个询问,每个询问有 x 堆石子 ,问你每次只能从某一个堆中取出 y 个石子,并且这个 y 必须属于给定的集合,问你先手胜还是负. 析:一个很简单的 ...

  5. 浅谈公平组合游戏IGC

    浅谈公平组合游戏IGC IGC简介 一个游戏满足以下条件时被叫做IGC游戏 (前面三个字是自己YY的,不必在意) 竞争性:两名玩家交替行动. 公平性:游戏进程的任意时刻,可以执行的操作和操作者本人无关 ...

  6. 组合游戏 - SG函数和SG定理

    在介绍SG函数和SG定理之前我们先介绍介绍必胜点与必败点吧. 必胜点和必败点的概念:        P点:必败点,换而言之,就是谁处于此位置,则在双方操作正确的情况下必败.        N点:必胜点 ...

  7. 博弈论题目总结(二)——SG组合游戏及变形

    SG函数 为了更一般化博弈问题,我们引入SG函数 SG函数有如下性质: 1.如果某个状态SG函数值为0,则它后继的每个状态SG函数值都不为0 2.如果某个状态SG函数值不为0,则它至少存在一个后继的状 ...

  8. 【博弈论】组合游戏及SG函数浅析

    目录 预备知识 普通的Nim游戏 SG函数 预备知识 公平组合游戏(ICG) 若一个游戏满足: 由两名玩家交替行动: 游戏中任意时刻,合法操作集合只取决于这个局面本身: 若轮到某位选手时,若该选手无合 ...

  9. (转载)VC/MFC 工具栏上动态添加组合框等控件的方法

    引言 工具条作为大多数标准的Windows应用程序的 一个重要组成部分,使其成为促进人机界面友好的一个重要工具.通过工具条极大方便了用户对程序的操作,但是在由Microsoft Visual C++开 ...

随机推荐

  1. PHP系列之一traits的应用

    Traits 在PHP中实现在方法的重复使用:Traits与Class相似,但是它能够在Class中使用自己的方法而不用继承: Traits在Class中优先于原Class中的方法,引用PHP Doc ...

  2. php面试题之一——PHP核心技术(高级部分)

    一.PHP核心技术 1.写出一个能创建多级目录的PHP函数(新浪网技术部) <?php /** * 创建多级目录 * @param $path string 要创建的目录 * @param $m ...

  3. .net经验积累

    希望对.net编程者有所帮助 1.学会配置环境变量  1.我的电脑-属性-环境变量-双击下面的path-粘贴路径  2.ctrl+r 输入软件名字按回车 2.常用vs2010快捷键  代码格式化:ct ...

  4. MongoDB整合Spring

    1.环境 Jdk:1.6.0_10-rc2 Spring3.1.2  下载 依赖jar文件: 2.相关配置 ①.Spring配置文件 <?xml version="1.0"  ...

  5. elasticseach multi-field的实际用途

    下面是multi-field的介绍: multi_field 多域类型允许你对同一个值以映射的方式定义成多个基本类型 core_types . 这个非常有用,比如,如果你定义一个 string 类型的 ...

  6. ASP.NET页面间传值总结

    本文我们将讨论的是ASP.NET页面间数据传递的几种方法,对此希望能帮助大家正确的理解ASP.NET页面间数据传递的用处以及便利性. Web页面是无状态的,服务器对每一次请求都认为来自不同用户,因此, ...

  7. swift基础二

    import Foundation // MARK: - ?和!的区别 // ?代表可选类型,实质上是枚举类型,里面有None和Some两种类型,其实nil相当于OPtional.None,如果非ni ...

  8. TCP & UDP & IP

    TCP和UDP的区别   TCP UDP 是否连接 面向连接 面向非连接 应用场合 可靠的 不可靠的 速度 慢 快 传送数据 字节流 数据报 是否可用于广播 否 是 为什么UDP比TCP快 不需要连接 ...

  9. jQuery DataTables 行获取

    datatables的官方例子中似乎没有提到表格双击和获取相应行号的功能; 经过探索可以按照以下方式实现:  $("#example tbody tr").dblclick(fun ...

  10. mac:ssh登陆总是需要输入钥匙串密码解决

    方法1: finder -> 左上角:前往->按住option建->多出一个资源->KeyChains->第一个文件夹(删除掉次文件夹) 然后重启即可 方法2: ssh- ...