HDU 4635:Strongly connected(强连通)
http://acm.hdu.edu.cn/showproblem.php?pid=4635
题意:给出n个点和m条边,问最多能添加几条边使得图不是一个强连通图。如果一开始强连通就-1.思路:把图分成x个强连通分量之后,每个强连通分量最大的边数是n*(n-1),然后考虑和其他强连通分量相连的情况:即把分量a的所有点都连向分量b的所有点,而b不连a,这样就可以让图不是强连通的。可以把整个图分成两个强连通分量a和b分别有i和j个点,其中i+j=n,那么答案就是n*(n-1)-m-i*j。所以求出最小的i*j就可以找到答案了。
#include <cstdio>
#include <algorithm>
#include <iostream>
#include <cstring>
#include <string>
#include <cmath>
#include <queue>
#include <vector>
#include <stack>
using namespace std;
#define N 100010
struct node
{
int v, next, u;
}edge[N]; int n, tot, cnt, num, head[N], dfn[N], low[N], belong[N], in[N], out[N], deg[N], tol[N], e[N];
bool vis[N];
stack<int> sta; void init()
{
tot = ;
num = ;
cnt = ;
while(!sta.empty()) sta.pop();
memset(head, -, sizeof(head));
memset(vis, false, sizeof(vis));
memset(low, , sizeof(low));
memset(dfn, , sizeof(dfn));
memset(belong, , sizeof(belong));
memset(in, , sizeof(in));
memset(out, , sizeof(out));
memset(deg, , sizeof(deg));
memset(tol, , sizeof(tol));
memset(e, , sizeof(e));
} void add(int u, int v)
{
edge[tot].u = u; edge[tot].v = v; edge[tot].next = head[u]; head[u] = tot++;
} void tarjan(int u)
{
vis[u] = ; sta.push(u);
dfn[u] = low[u] = ++cnt;
for(int i = head[u]; ~i; i = edge[i].next) {
int v = edge[i].v;
if(!dfn[v]) {
tarjan(v);
if(low[v] < low[u]) low[u] = low[v];
} else if(vis[v]) {
if(dfn[v] < low[u]) low[u] = dfn[v];
}
}
if(low[u] == dfn[u]) {
++num;
int top = -;
while(top != u) {
top = sta.top(); sta.pop();
vis[top] = ;
belong[top] = num;
}
}
} bool cmp(const int &a, const int &b)
{
if(out[a] != ) return false;
if(out[b] != ) return true;
return tol[a] < tol[b];
} int main()
{
int t, cas = ;
scanf("%d", &t);
while(t--) {
int n, m;
scanf("%d%d", &n, &m);
init();
for(int i = ; i < m; i++) {
int u, v;
scanf("%d%d", &u, &v);
add(u, v);
deg[u]++; deg[v]++;
}
for(int i = ; i <= n; i++) {
if(!dfn[i]) tarjan(i);
}
printf("Case %d: ", cas++);
if(num == ) {
puts("-1"); continue;
}
// printf("~~~\n");
for(int u = ; u <= n; u++) {
for(int i = head[u]; ~i; i = edge[i].next) {
int v = edge[i].v;
if(belong[u] != belong[v]) {
in[belong[v]]++;
out[belong[u]]++;
}
}
}
long long sum = (long long)n * (n - ) - m;
for(int i = ; i <= n; i++) {
int tmp = belong[i];
tol[tmp]++;
}
long long ans = ;
for(int i = ; i <= num; i++) {
if(!in[i] || !out[i]) {
ans = max(ans, sum - (long long)(n - tol[i]) * tol[i]);
}
}
printf("%I64d\n", ans);
}
return ;
} /*
1
6 7
1 2
2 3
3 1
4 5
5 6
6 4
6 1
*/
HDU 4635:Strongly connected(强连通)的更多相关文章
- hdu 4635 Strongly connected 强连通缩点
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4635 题意:给你一个n个点m条边的图,问在图不是强连通图的情况下,最多可以向图中添多少条边,若图为原来 ...
- HDU 4635 Strongly connected(强连通)经典
Strongly connected Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Other ...
- HDU 4635 Strongly connected (强连通分量)
题意 给定一个N个点M条边的简单图,求最多能加几条边,使得这个图仍然不是一个强连通图. 思路 2013多校第四场1004题.和官方题解思路一样,就直接贴了~ 最终添加完边的图,肯定可以分成两个部X和Y ...
- hdu 4635 Strongly connected 强连通
题目链接 给一个有向图, 问你最多可以加多少条边, 使得加完边后的图不是一个强连通图. 只做过加多少条边变成强连通的, 一下子就懵逼了 我们可以反过来想. 最后的图不是强连通, 那么我们一定可以将它分 ...
- HDU 4635 Strongly connected (强连通分量+缩点)
<题目链接> 题目大意: 给你一张有向图,问在保证该图不能成为强连通图的条件下,最多能够添加几条有向边. 解题分析: 我们从反面思考,在该图是一张有向完全图的情况下,最少删去几条边能够使其 ...
- HDU 4635 —— Strongly connected——————【 强连通、最多加多少边仍不强连通】
Strongly connected Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u ...
- HDU 4635 Strongly connected (2013多校4 1004 有向图的强连通分量)
Strongly connected Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Other ...
- HDU 4635 Strongly connected (Tarjan+一点数学分析)
Strongly connected Time Limit : 2000/1000ms (Java/Other) Memory Limit : 32768/32768K (Java/Other) ...
- hdu 4635 Strongly connected(强连通)
考强连通缩点,算模板题吧,比赛的时候又想多了,大概是不自信吧,才开始认真搞图论,把题目想复杂了. 题意就是给你任意图,保证是simple directed graph,问最多加多少条边能使图仍然是si ...
- HDU 4635 Strongly connected(强连通分量,变形)
题意:给出一个有向图(不一定连通),问最多可添加多少条边而该图仍然没有强连通. 思路: 强连通分量必须先求出,每个强连通分量包含有几个点也需要知道,每个点只会属于1个强连通分量. 在使图不强连通的前提 ...
随机推荐
- [CC]ccHObject
qCC_db中的ccHObject
- css实现元素居中
参见详细教程,该教程涵盖了所有居中的情况: https://css-tricks.com/centering-css-complete-guide/ css元素居中 1.水平居中 1)文本,图片等行 ...
- uiimageView连续帧动画
// // MJViewController.m // 05-汤姆猫 // // Created by apple on 14-3-24. // Copyright (c) 2014年 itc ...
- urllib下载文件
import urllib 1.用urlib.urlretrieve f = urllib.urlretrieve('http://www.baidu.com/img/bdlogo.gif','/tm ...
- 利用Xstream注解生成和解析xml
实体类: @XStreamAlias("person") public class PersonBean { @XStreamAlias("firstName&q ...
- 集群因子(Clustering Factor)
clustering factor是CBO使用的统计信息,用来衡量一个表中的列是否是规则排序存放的. 在通过索引访问表的时候,被用来作为代价评估的指示器.扫描索引的时候,clustering fact ...
- 用get方式提交请求的url带有中文参数
又碰到JSP页面中文乱码问题,经过一次encodeURI处理后仍旧是乱码,后来经过两次encodeURI后正常显示中文 以前也碰到过同样的问题,没深究,这次网上搜集了一些资料,记录下来留做备份 ___ ...
- EL表达<%@page isELIgnored="false"%>问题
上网查找资料后得知:主要原因是EL表达式无法被解析到. 其实从后台取值并传值到前台来根本就没有错,而前台JSP页面EL表达式无效,解析不到EL表达式,引起的原因是web.xml中: <web-a ...
- Android遇到的错误,运行时崩溃
修改主题背景时在<Activity>中增加android:theme="@android:style/Theme.Black.NoTitleBar"时运行 出现崩溃的现 ...
- Good Bye 2013
C:有点这种题的经验,先存起来相等的 D:赛后还搓了好久的代码,其实长度就100,枚举两边情况,其实A和C就涵盖了所有情况!所以到2就可以了,而且我弄出了有多少个后,和两边情况,也不知道能否或怎么凑成 ...