题目问[1,n]有几个数是$m^k (k>1)$形式。

如果这样考虑,m已知k未知,对于每一个m统计其k的数量即$\lfloor log_mn \rfloor$个,再容斥,然而m太多了,完全不可行。

而k远远比m还少,应该反过来考虑,m未知k已知,对于每一个k统计其m的数量,即$\lfloor \sqrt[k]n \rfloor$个。

由于$n \leqslant 10^{18}$,而$2^{60} > 10^{18}$,所以k的范围就是小于60的整数。

然而60用容斥$2^{60}$还是不可行,而$m^{a \times b}$,已知就被$m^a$和$m^b$计数过了,所以对于所有60以内的合数完全可以在一开始就除去,即只考虑60以内的质数。

而60以内的质数只有17个,那么就OK了。

 #include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
int prime[]={,,,,,,,,,,,,,,,,,};
int main(){
long long n;
while(~scanf("%lld",&n)){
int pn=;
while((1LL<<prime[pn+])<=n) ++pn;
long long res=;
for(int i=; i<(<<pn); ++i){
long long tmp=; int cnt=;
for(int j=; j<pn; ++j){
if(((i>>j)&)==) continue;
tmp*=prime[j]; ++cnt;
}
if(cnt&) res+=(long long)(pow(n,1.0/tmp)+1e-);
else res-=(long long)(pow(n,1.0/tmp)+1e-);
}
printf("%lld\n",res+);
}
return ;
}

HDU2204 Eddy's爱好(容斥原理)的更多相关文章

  1. hdu2204 Eddy's爱好 打表+容斥原理

    Ignatius 喜欢收集蝴蝶标本和邮票,但是Eddy的爱好很特别,他对数字比较感兴趣,他曾经一度沉迷于素数,而现在他对于一些新的特殊数比较有兴趣.这些特殊数是这样的:这些数都能表示成M^K,M和K是 ...

  2. HDU 2204 Eddy's 爱好 (容斥原理)

    <题目链接> 题目大意: Ignatius 喜欢收集蝴蝶标本和邮票,但是Eddy的爱好很特别,他对数字比较感兴趣,他曾经一度沉迷于素数,而现在他对于一些新的特殊数比较有兴趣. 这些特殊数是 ...

  3. Hdu2204 Eddy's爱好 2017-06-27 16:11 43人阅读 评论(0) 收藏

    Eddy's爱好 Time Limit : 3000/1000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Other) Total Subm ...

  4. hdu 2204 Eddy's爱好 容斥原理

    Eddy's爱好 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Problem ...

  5. HDU2204 Eddy's爱好

    题意:给你一个正整数N,确定在1到N之间有多少个可以表示成M^K(K>1)的数. 解析:一个数N 开K次根后得到M  则小于M的所有数的K次方一定小于N 因为任何一个合数都能分解为素数的乘积 所 ...

  6. Eddy's爱好 hdu2204

    Eddy's爱好 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Su ...

  7. HDU 2204Eddy's爱好(容斥原理)

    Eddy's爱好 Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit Sta ...

  8. Eddy's爱好(dfs+容斥)

    Eddy's爱好 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total S ...

  9. HDU 2204 Eddy's爱好(容斥原理dfs写法)题解

    题意:定义如果一个数能表示为M^k,那么这个数是好数,问你1~n有几个好数. 思路:如果k是合数,显然会有重复,比如a^(b*c) == (a^b)^c,那么我们打个素数表,指数只枚举素数,2^60 ...

随机推荐

  1. [Effective JavaScript 笔记]第54条:将undefined看做“没有值”

    undefined值很特殊,每当js无法提供具体的值时,就会产生undefined. undefined值场景 未赋值的变量的初始值即为undefined. var x; x;//undefined ...

  2. 腾讯即时聊天sdk

    一. 初始化 腾讯即时通讯sdk 1. 程序日志注册 2. 连接通知回调  专门的类管理 3. 信息通知回调 专门的类 4. 初始化sdk 5. 注册推送 分ios8/ios以前 注册推送成功回调 发 ...

  3. ruby : Exception Notification

    https://github.com/smartinez87/exception_notification#sections Add the following line to your applic ...

  4. [BZOJ1171][BZOJ2892]大sz的游戏

    [BZOJ1171][BZOJ2892]大sz的游戏 试题描述 大sz最近在玩一个由星球大战改编的游戏.话说绝地武士当前共控制了N个星球.但是,西斯正在暗处悄悄地准备他们的复仇计划.绝地评议会也感觉到 ...

  5. phpcms某处储存型XSS(demo+本地演示)

    文章转载:http://www.myhack58.com/Article/html/3/7/2016/71726.htm 详细说明: demo+本地演示存在xss漏洞的地方在商务中心的商家资料的我的资 ...

  6. django-cms 代码研究(三)插件(plugs in)

    插件(plugs in) djangocms支持的插件有: http://docs.django-cms.org/en/latest/basic_reference/plugin_reference. ...

  7. linux开机启动服务和chkconfig使用方法(自定义服务路径启动)

    服务概述在linux操作系统下,经常需要创建一些服务,这些服务被做成shell脚本,这些服务需要在系统启动的时候自动启动,关闭的时候自动关闭.将 需要自动启动的脚本/etc/rc.d/init.d目录 ...

  8. Segment Tree Build I & II

    Segment Tree Build I The structure of Segment Tree is a binary tree which each node has two attribut ...

  9. BestCoder15 1002.Instruction(hdu 5083) 解题报告

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5083 题目意思:如果给出 instruction 就需要输出对应的 16-bit binary cod ...

  10. HTML5-------元素使用

    HTML5的元素使用