poj 2773 利用欧拉函数求互质数
题意:找到与n互质的第 k个数
开始一看n是1e6 敲了个暴力结果tle了,后来发现k达到了 1e8
所以需要用到欧拉函数。
我们设小于n的 ,与n互质的数为 (a1,a2,a3.......a(phi(n)))
那么显然,在区间 [ k*n , (k+1)*n ]内的互质数即为 k*n+(a1,a2,a3.......a(phi(n)))
所以只需要求出 (a1,a2,a3.......a(phi(n))) 就可以利用欧拉函数快速找到后面的数
代码如下:
#include <iostream>
#include <stdio.h>
#include<string.h>
#include<algorithm>
#include<string>
#include<ctype.h>
using namespace std;
#define maxn 1000000
int euler[maxn+];
void phi()
{
for(int i=;i<=maxn;i++)
euler[i]=i;
for(int i=;i<=maxn;i+=)
euler[i]/=;
for(int i=;i<=maxn;i++)
{
if(euler[i]==i) //未被筛到。是素数,则用此素数来筛
{
for(int j=i;j<=maxn;j+=i)
{
euler[j]=euler[j]/i*(i-);
}
}
}
return ;
}
int gcd(int a,int b)
{
return b?gcd(b,a%b):a;
}
int main()
{
int n,k;
phi();
while(scanf("%d%d",&n,&k)!=EOF)
{
int t=k/euler[n];
int p=k%euler[n];
if(p==)
{
t--;
p=euler[n];
}
int i;
for(i=;i<=n;i++)
{
if(gcd(i,n)==)
p--;
if(p==)
break;
}
printf("%I64d\n",i+(long long)t*n);
} return ;
}
poj 2773 利用欧拉函数求互质数的更多相关文章
- BZOJ2818: Gcd 欧拉函数求前缀和
给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 如果两个数的x,y最大公约数是z,那么x/z,y/z一定是互质的 然后找到所有的素数,然后用欧拉函数求一 ...
- poj2480(利用欧拉函数的积性求解)
题目链接: http://poj.org/problem?id=2480 题意:∑gcd(i, N) 1<=i <=N,就这个公式,给你一个n,让你求sum=gcd(1,n)+gcd(2, ...
- POJ 2480 (约数+欧拉函数)
题目链接: http://poj.org/problem?id=2480 题目大意:求Σgcd(i,n). 解题思路: 如果i与n互质,gcd(i,n)=1,且总和=欧拉函数phi(n). 如果i与n ...
- Poj 2478-Farey Sequence 欧拉函数,素数,线性筛
Farey Sequence Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 14291 Accepted: 5647 D ...
- POJ 2407 Relatives(欧拉函数)
题目链接 题意 : 求小于等于n中与n互质的数的个数. 思路 : 看数学的时候有一部分是将欧拉函数的,虽然我没怎么看懂,但是模板我记得了,所以直接套了一下模板. 这里是欧拉函数的简介. #includ ...
- poj 2480 (欧拉函数应用)
点击打开链接 //求SUM(gcd(i,n), 1<=i<=n) /* g(n)=gcd(i,n),根据积性定义g(mn)=g(m)*g(n)(gcd(m,n)==1) 所以gcd(i,n ...
- POJ 2407 Relatives 欧拉函数题解
版权声明:本文作者靖心,靖空间地址:http://blog.csdn.net/kenden23/,未经本作者同意不得转载. https://blog.csdn.net/kenden23/article ...
- UVA 12493 Stars (欧拉函数--求1~n与n互质的个数)
pid=26358">https://uva.onlinejudge.org/index.phpoption=com_onlinejudge&Itemid=8&cate ...
- 【poj 1284】Primitive Roots(数论--欧拉函数 求原根个数){费马小定理、欧拉定理}
题意:求奇质数 P 的原根个数.若 x 是 P 的原根,那么 x^k (k=1~p-1) 模 P 为1~p-1,且互不相同. (3≤ P<65536) 解法:有费马小定理:若 p 是质数,x^( ...
随机推荐
- C++编程规范之20:避免函数过长,避免嵌套过深
摘要: 短胜于长,平胜于优,过长的函数和嵌套过深的代码块的出现,经常是因为没能赋予一个函数以一个紧凑的职责所致,这两种情况通常都能够通过更好的重构予以解决. 每个函数都应该顾其名而能知其义,易于理解的 ...
- 路径问题以及cookie详解
1.路径问题: 注意 .代表执行程序的文件夹路径,在tomcat中也就是bin目录,所以要用this.getServletContext().getRealPath("/WEB-INF/cl ...
- Socket tips: UDP Echo service - Server code
#include <stdio.h> #include <stdlib.h> #include <sys/types.h> #include <sys/soc ...
- [ES6] Export class and variable
Export variable: export const MAX_USERS = 3; export const MAX_REPLIES = 3; Export default class: exp ...
- FoxOne---一个快速高效的BS框架
FoxOne---一个快速高效的BS框架--(1) FoxOne---一个快速高效的BS框架--(2) FoxOne---一个快速高效的BS框架--(3) FoxOne---一个快速高效的BS框架-- ...
- USB挂起与唤醒.
USB可见设备状态分为连接(Attached),上电(Powered),默认(Default),地址(Address),配置(Configured)和挂起(Suspended)6个状态.所谓可见,即U ...
- 判断http 请求来自于手机还是PC
首先收集了部分客户端请求头部信息如下 iPhone微信: User-Agent: Mozilla/5.0 (iPhone; CPU iPhone OS 8_1_2 like Mac OS X) App ...
- 关于html控件和服务器控件摁回车后提交按钮的问题
今天做项目用到,项目是一个洗车系统,刷卡后在焦点出自动触发回车键事件,如,一个文本框,把焦点放入,刷一下卡,文本框自动获取卡号,同时触发回车事件,(就像银行办卡一样),发现刷卡后页面刷新后并没有执行按 ...
- permission is only granted to system apps--Android manifest权限问题
在android的manifest.xml下编辑如下代码:<uses-permission android:name="android.permission.INTERNET" ...
- iOS开发中的MVC设计模式
我们今天谈谈cocoa程序设计中的 模型-视图-控制器(MVC)范型.我们将从两大方面来讨论MVC: 什么是MVC? M.V.C之间的交流方式是什么样子的? 理解了MVC的概念,对cocoa程序开发是 ...