Naive Bayes(朴素贝叶斯算法)[分类算法]
Naïve Bayes(朴素贝叶斯)分类算法的实现
(1) 简介:
(2) 算法描述:
(3)
<?php
/*
*Naive Bayes朴素贝叶斯算法(分类算法的实现)
*/ /*
*把.txt中的内容读到数组中保存
*$filename:文件名称
*/
//--------------------------------------------------------------------
function getFileContent($filename)
{
$array = array(null);
$content = file_get_contents($filename);
$result = explode("\r\n",$content);
//print_r(count($result));
for($j=0;$j<count($result);$j++)
{
//print_r($result[$j]."<br>");
$con = explode(" ",$result[$j]);
array_push($array,$con);
}
array_splice($array,0,1);
return $array;
}
//-------------------------------------------------------------------- /*
*NaiveBayes朴素贝叶斯算法
*$test:测试文本;$train:训练文本;$flagsyes:yes;$flagsno:no
*/
//--------------------------------------------------------------------
function NaiveBayes($test,$train,$flagsyes,$flagsno)
{
$count_yes = 0;
$num = count($train[0]);
for($i=1;$i<count($train);$i++)
{
if($train[$i][$num-1]==$flagsyes)$count_yes++;
}
$p_yes = $count_yes / (count($train)-1);
$p_no = 1- $p_yes; $count_no = count($train)-1 - $count_yes; for($i=1;$i<count($test)-1;$i++)
{
$testnumyes = 0;
$testnumno = 0;
for($j=1;$j<count($train);$j++)
{
if(($train[$j][$i]==$test[$i])&&($train[$j][count($test)-1]==$flagsyes))$testnumyes++;
else if(($train[$j][$i]==$test[$i])&&($train[$j][count($test)-1]==$flagsno))$testnumno++;
} $array_yes[$i] = $testnumyes / $count_yes ;
$array_no[$i] = $testnumno / $count_no ;
/*
print_r($testnumyes."<br>");
print_r($testnumno."<br>");
print_r($count_yes."<br>");
print_r($count_no."<br>");
print_r($array_no[$i]."<br>");
*/
} $py=1;
$pn=1;
for($i=1;$i<count($test)-1;$i++){
$py *= $array_yes[$i];
$pn *= $array_no[$i];
} $py *= $p_yes;
$pn *= $p_no; if($py>$pn)return $flagsyes;
else return $flagsno; /* print_r($py."<br>");
print_r($pn."<br>");
*/ }
//-------------------------------------------------------------------- $train = getFileContent("train.txt");
$test = getFileContent("test.txt"); for($i=1;$i<count($test);$i++)
{
$test[$i][count($test[0])-1] = NaiveBayes($test[$i],$train,Y,N);
} /*
*将数组中的内容读到.txt中
*/
//--------------------------------------------------------------------
$fp= fopen('result.txt','wb');
for($i=0;$i<count($test);$i++)
{
$temp = NULL;
for($j=0;$j<count($test[$i]);$j++)
{
$temp = $test[$i][$j]."\t";
fwrite($fp,$temp);
}
fwrite($fp,"\r\n");
}
fclose($fp);
//-------------------------------------------------------------------- /*
*打印输出
*/
//--------------------------------------------------------------------
echo "<pre>";
print_r($test);
echo "</pre>";
//--------------------------------------------------------------------
?>
Naive Bayes(朴素贝叶斯算法)[分类算法]的更多相关文章
- 模式识别之线性判别---naive bayes朴素贝叶斯代码实现
http://blog.csdn.net/xceman1997/article/details/7955349 http://www.cnblogs.com/yuyang-DataAnalysis/a ...
- 机器学习集成算法--- 朴素贝叶斯,k-近邻算法,决策树,支持向量机(SVM),Logistic回归
朴素贝叶斯: 是使用概率论来分类的算法.其中朴素:各特征条件独立:贝叶斯:根据贝叶斯定理.这里,只要分别估计出,特征 Χi 在每一类的条件概率就可以了.类别 y 的先验概率可以通过训练集算出 k-近邻 ...
- 3.朴素贝叶斯和KNN算法的推导和python实现
前面一个博客我们用Scikit-Learn实现了中文文本分类的全过程,这篇博客,着重分析项目最核心的部分分类算法:朴素贝叶斯算法以及KNN算法的基本原理和简单python实现. 3.1 贝叶斯公式的推 ...
- PGM:贝叶斯网表示之朴素贝叶斯模型naive Bayes
http://blog.csdn.net/pipisorry/article/details/52469064 独立性质的利用 条件参数化和条件独立性假设被结合在一起,目的是对高维概率分布产生非常紧凑 ...
- [机器学习] 分类 --- Naive Bayes(朴素贝叶斯)
Naive Bayes-朴素贝叶斯 Bayes' theorem(贝叶斯法则) 在概率论和统计学中,Bayes' theorem(贝叶斯法则)根据事件的先验知识描述事件的概率.贝叶斯法则表达式如下所示 ...
- 朴素贝叶斯算法——实现新闻分类(Sklearn实现)
1.朴素贝叶斯实现新闻分类的步骤 (1)提供文本文件,即数据集下载 (2)准备数据 将数据集划分为训练集和测试集:使用jieba模块进行分词,词频统计,停用词过滤,文本特征提取,将文本数据向量化 停用 ...
- Python机器学习笔记:朴素贝叶斯算法
朴素贝叶斯是经典的机器学习算法之一,也是为数不多的基于概率论的分类算法.对于大多数的分类算法,在所有的机器学习分类算法中,朴素贝叶斯和其他绝大多数的分类算法都不同.比如决策树,KNN,逻辑回归,支持向 ...
- 机器学习---朴素贝叶斯与逻辑回归的区别(Machine Learning Naive Bayes Logistic Regression Difference)
朴素贝叶斯与逻辑回归的区别: 朴素贝叶斯 逻辑回归 生成模型(Generative model) 判别模型(Discriminative model) 对特征x和目标y的联合分布P(x,y)建模,使用 ...
- NLP系列(4)_朴素贝叶斯实战与进阶
作者: 寒小阳 && 龙心尘 时间:2016年2月. 出处:http://blog.csdn.net/han_xiaoyang/article/details/50629608 htt ...
随机推荐
- 【solr基础教程之二】索引
一.向Solr提交索引的方式 1.使用post.jar进行索引 (1)创建文档xml文件 <add> <doc> <field name="id"&g ...
- 浅谈localStorage本地存储
在年会的抽奖程序中用到了localStorage现在拿出来总结下,localStorage的相关用法. 在年会抽奖的程序中,需要把获奖名单存储下来,年会现场没有网络,能最简单实现数据存储的方式就是,将 ...
- 安装mysqlsla性能分析工具
开启mysql慢查询日志 vi /etc/my.cnf slow-query-log = on #开启MySQL慢查询功能 slow_query_log_file = /data/mysql/127 ...
- WSGI的理解
Python web开发中,服务端程序可分为2个部分: 服务器程序(用来接收.整理客户端发送的请求) 应用程序(处理服务器程序传递过来的请求) 在开发应用程序的时候,我们会把常用的功能封装起来,成为各 ...
- DLL技术应用03 - 零基础入门学习Delphi46
DLL技术应用03 让编程改变世界 Change the world by program DLL的加载和调用 [caption id="attachment_2685" alig ...
- Django学习之路
Django Website Collect django packages http://djangopackages.com/ django project http://code.djangop ...
- logstash 解析mysql slow log
# User@Host: zjzc_app[zjzc_app] @ [10.252.148.16xx] Id: 6043127 # Query_time: 2.581184 Lock_time: 0. ...
- 【C语言用法】C语言的函数“重载”
由于平时很少用到__attribute__定义函数或者变量的符号属性,所以很难想象C语言可以向C++一样进行函数或者变量的重载. 首先,复习一下有关强符号与弱符号的概念和编译器对强弱符号的处理规则: ...
- Linux下(主要针对Ubuntu)下桌面分辨率的添加
系统版本: Linux (Ubuntu) 其他桌面发行版应该也行. 相关命令: lspci, cvt, xrandr 在桌面分辨率不正常显示桌面或者没有最佳的分辨率时,需要修改添加适合的桌面分辨率模式 ...
- STL源码剖析读书笔记之vector
STL源码剖析读书笔记之vector 1.vector概述 vector是一种序列式容器,我的理解是vector就像数组.但是数组有一个很大的问题就是当我们分配 一个一定大小的数组的时候,起初也许我们 ...