案例描述
信息系统是否真正减轻业务人员的日常工作量提高工作效率?如何从提供“被动”服务转变为根据客户感知提供“主动”服务,真正实现电网企业对信息系统服务的有效管理?如何构建一套适合企业的信息系统客户服务感知模型,通过模型准确定位信息系统客户服务过程中存在的问题,并通过建立信息系统客户服务管控体系,不断完善和优化运维服务,提高客户服务水平,提升信息系统客户服务满意度?已成为企业有效促进信息化工作水平提高的重要工作。
案例分析
信息系统客户服务感知是指客户对信息系统的体验和感受,反映当前信息系统的质量与用户期望的差距。
在信息系统客户服务感知综合评价中,涉及到大量的复杂现象和多种因素的相互作用,而且,评价中存在大量的模糊现象和模糊概念。因此,在综合评价时,有学者采用模糊综合评价的方法进行定量化处理,评价出信息系统客户服务感知等级,并已取得一定的效果。但采用这种方法进行信息系统客户服务感知建模,各输入指标权重的确定需要用专家的知识和经验,具有很大的主观性,存在明显的缺陷,所以不太适用。
本用例的是使用信息系统的主体(感知用户)对信息系统的服务效果进行主观感知评价,然后将各影响因素的感知结果融合得到信息系统的总体满意度评价等级中,是对模糊输入信号进行融合处理,模糊神经网络结合了模糊评价法与神经网络评价法的优点,在解决这类问题时具有明显优势。
预测建模
操作步骤一:评价指标体系设计
信息系统客户服务感知评价指标主要基于以下原则设计:
1)评价指标能真实反映用户对信息系统的服务评价。
2)样本数据方便采集,即评价指标数据能被用户感知。
3)通过对这些评价指标的改进,能真正定位信息系统服务过程中存在的问题,达到不断完善和优化信息系统的目的。
基于以上原则及与业务人员深入沟通,最后确立了信息系统客户服务感知评价指标体系,指标体系涵盖了系统本身和系统运维服务方面的指标,共6个一级指标和18个二级指标,如图16。
操作步骤二:样本准备
用户感知样本数据主要通过对公司的个人问卷调查获得,共涉及19个业务部门、5类岗位、21个应用系统,经数据预处理后,将其中的19个业务系统的样本数据用于预测建模,任意保留两个业务系统的数据用于模型验证。
操作步骤三:属性选择
属性选择,也叫属性约简,是指在不丧失特定的应用数据原有价值的基础上去除不相关和冗余的属性,选择最小部分的属性,形成子集。这种方式能够提高数据的质量,并能够加快学习的速度,属性选择是机器学习过程中的重要的一部分。
从广义上可将属性选择算法分为过滤器(Filter) 和嵌入方式(Wrapper) 两种算法,FCBF(Fast Correlation-based Feature Select ion) 属于后者,所以在处理属性维度较大的感知评价数据上有一定优势。一般来说,如果一个特征和某个类的相关性足够,同时它与其它任意特征的相关性又都没达到某一水平,则认为这个特征对这个类来说是好的特征。FCBF用对阵不确定性(Symmetrical Uncertainty,SU) 作为衡量指标,利用了SU的值来进行属性选择,SU 取值在[0,1]之间,1表示两个随机变量可以相互完全预测对方的值,0 则表示两个随机变量彼此独立。SU 的值越大,代表其特征的优越性就越大。
表1为FCBF搜索策略基于对称不确定性的评估排序方法的属性选择结果。
 
表1的排序结果也反映了各评价指标与总体评价结果的相关程度。
从表1可知,影响信息系统总体评价满意度的指标主要为第7、第16、第17和第8个属性,分别对应运行稳定性、投诉渠道畅通性、故障处理及时性、响应及时性。
在感知评价建模中进行属性选择不仅能够找到最合适于进行信息系统客户满意度评价的最小属性集合,也能够提高算法性能。实验结果表明在识别的准确率上使用全部的评价指标只略高于利用属性选择算法选择出来的属性集的准确率,但是在算法效率上后者高出很多。因此属性选择是感知建模过程中的关键的一步。
操作步骤四:模型构建
模糊神经网络模型构建流程如图3:
      
操作步骤五:模型评价
在模型训练完成后,分别用生产管理系统、营销管理系统对已构建的感知评价模型进行验证。表2为对两系统的评价指标进行数据融合后的结果。
表14评价指标融合后结果

序号
感知评价模型
模型评价结果
生产管理系统
营销管理系统
1
回归分析
3.7586
3.9299
2
BP神经网络
3.9367
3.9644
3
RBF神经网络
3.8080
3.8104
4
FNN神经网络
3.5736
3.6386
 
本文中,除了用模糊神经网络完成信息系统客户服务感知评价建模外,同时通过回归分析、BP神经网络、RBF神经网络建模,对不同模型算法的建模结果进行对比分析。不同模型算法的预测评价结果如表3。
表15不同算法评价结果

序号
感知评价模型
模型评价结果
生产管理系统
营销管理系统
1
回归分析
3.7586
3.9299
2
BP神经网络
3.9367
3.9644
3
RBF神经网络
3.8080
3.8104
4
FNN神经网络
3.5736
3.6386
 
由表3知,不同感知模型的评价结果基本都能反映用户对应用系统的满意度评价情况,具体哪个算法最优,可通过不同算法在模型验证时的均方根误差来衡量,对比分析结果如表3。

从建模过程及验证结果来看,FNN神经网络虽然比回归分析、BP神经网络、RBF神经网络等算法建模速度稍慢,但总的来说,FNN神经网络比回归分析、BP神经网络、RBF神经网络等算法的预测精度均要高,这也体现了模糊神经网络用于信息系统客户服务感知建模的优势。

上机操作环境:www.tipdm.cn

FNN模糊神经网络——信息系统客户服务感知评价的更多相关文章

  1. 笔记+R︱信用风险建模中神经网络激活函数与感知器简述

    每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 本笔记源于CDA-DSC课程,由常国珍老师主讲 ...

  2. 神经网络入门——8XOR感知器

    XOR 感知器     XOR 感知器就是一个这样的逻辑门:输入相同返回 0 ,输入不同返回 1.与之前的感知器不同,这里并不是线性可分的.要处理这类较为复杂的问题,我们需要把感知器连接起来. 我们用 ...

  3. 神经网络入门——7or 感知器

    OR 感知器 OR 感知器与 AND 感知器很类似,在下图中,OR 感知器与 AND 感知器有相同的分割线,只是 OR 感知器分割线下移了一段距离.对权重或者偏置做怎样的设置可以实现这个效果?用下面的 ...

  4. 曼孚科技:AI算法领域常用的39个术语(下)

    算法是人工智能(AI)核心领域之一. 本文整理了算法领域常用的39个术语,希望可以帮助大家更好地理解这门学科. 本文为下半部分,上半部分见本账号上一篇文章. 19.迁移学习(Transfer Lear ...

  5. 顶尖数据挖掘辅助教学套件(TipDM-T6)产品白皮书

          顶尖数据挖掘辅助教学套件 (TipDM-T6)           产  品  说  明  书 广州泰迪智能科技有限公司 版权所有 地址: 广州市经济技术开发区科学城232号 网址: ht ...

  6. 顶尖大数据挖掘实战平台(TipDM-H8)产品白皮书

        顶尖大数据挖掘实战平台 (TipDM-H8)           产  品  说  明  书 广州泰迪智能科技有限公司 版权所有 地址: 广州市经济技术开发区科学城232号 网址: http: ...

  7. BP神经网络及其在教学质量评价中 的应用

    本文学习笔记是自己的理解,如有错误的地方,请大家指正批评.共同进步.谢谢! 之前的教学质量评价,仅仅是通过对教学指标的简单处理.如求平均值或人为的给出各指标的权值来加权求和,其评价结果带有非常大主观性 ...

  8. RBF神经网络学习算法及与多层感知器的比较

    对于RBF神经网络的原理已经在我的博文<机器学习之径向基神经网络(RBF NN)>中介绍过,这里不再重复.今天要介绍的是常用的RBF神经网络学习算法及RBF神经网络与多层感知器网络的对比. ...

  9. 人工神经网络简介和单层网络实现AND运算--AForge.NET框架的使用(五)

    原文:人工神经网络简介和单层网络实现AND运算--AForge.NET框架的使用(五) 前面4篇文章说的是模糊系统,它不同于传统的值逻辑,理论基础是模糊数学,所以有些朋友看着有点迷糊,如果有兴趣建议参 ...

随机推荐

  1. Fish’s mission

    Fish’s mission 也就是求一个坐标到各个食堂的距离和最小,随机化做应该也是可以的.标程用的方法是利用单调性,不断尝试四个方向,二分的方法做的.实际上就是蚁群退火算法. #include & ...

  2. 简单的div蒙层

    ;;;; }  $("#userLogin").click(function () {             var heights = (parseInt($(window). ...

  3. telnet 不是内部或外部 命令

    win7->程序和功能->打开或关闭Windows功能->找到telnet安装下

  4. 工具:七牛云备份VPS服务器文件

    每一天,服务器上都会产生一系列的数据文件,有些文件不免具有重要性,但是如果我们只是简单的移动文件,那将不会具有很好的备份性,这里,我们借助Python实现对于文件的云端备份.      这个程序是我利 ...

  5. 【HDU1233】还是畅通工程(MST基础题)

    无坑,裸题.直接敲就恩那个AC. #include <iostream> #include <cstring> #include <cstdio> #include ...

  6. 《Algorithms 4th Edition》读书笔记——3.1 符号表(Elementary Symbol Tables)-Ⅲ

    3.1.3 用例举例 在学习它的实现之前我们还是应该先看看如何使用它.相应的我们这里考察两个用例:一个用来跟踪算法在小规模输入下的行为测试用例和一个来寻找更高效的实现的性能测试用例. 3.1.3.1 ...

  7. POJ 2392 Space Elevator DP

    该题与POJ 1742的思路基本一致:http://www.cnblogs.com/sevenun/p/5442279.html(多重背包) 题意:给你n个电梯,第i个电梯高h[i],数量有c[i]个 ...

  8. Hive 11、Hive嵌入Python

    Hive嵌入Python Python的输入输出都是\t为分隔符,否则会出错,python脚本输入print出规定格式的数据 用法为先add file,使用语法为TRANSFORM (name, it ...

  9. Jquery radio checked

    Jquery radio checked     radio 1. $("input[name='radio_name'][checked]").val(); //选择被选中Rad ...

  10. (史上最全的ios源码汇总)

    按钮类         按钮 Drop Down Control         http://www.apkbus.com/android-106661-1-1.html 按钮-Circular M ...