HDU 3571 N-dimensional Sphere
高斯消元,今天数学死了无数次……
#include <cstdio>
#include <cstring>
#include <cmath>
#include <iostream>
#include <algorithm>
#define LL __int64
const int maxn=55;
#define mod 200000000000000003LL //不能用const来定义。。,不知道为什么,需要是素数
#define diff 100000000000000000LL //偏移量,使得数都是整数,方便移位乘法
using namespace std;
LL x[maxn], g[maxn][maxn], a[maxn][maxn], b[maxn][maxn];
int n;
LL Mod(LL x)//加法取模,防止超__int64
{
if(x>=mod)
return x-mod;
return x;
}
LL mul(LL a,LL b)//乘法,用移位乘法,同样防止超__int64
{
LL s;
for(s=0;b;b>>=1)
{
if(b&1)
s=Mod(s+a);
a=Mod(a+a);
}
return s;
}
void gcd(LL a,LL b,LL d,LL &x,LL &y)//拓展的欧几里德定理,求ax+by=gcd(a,b)的一个解
{
if(!b){d=a;x=1;y=0;}
else{gcd(b,a%b,d,y,x);y-=x*(a/b);}
}
LL inv(LL a,LL n)//求逆,用于除法
{
LL x,y,d;
gcd(a,n,d,x,y);
return (x%n+n)%n;
}
void Gauss()//高斯消元
{
int i,j,k;
LL v,tmp;
for(i=0;i<n;i++)
{
for(j=i;j<n;j++)
{
if(g[j][i])
break;
}
if(i!=j)
{
for(k=i;k<=n;k++)
swap(g[i][k],g[j][k]);
}
v=inv(g[i][i],mod);
for(j=i+1;j<n;j++)
{
if(g[j][i])
{
tmp=mul(g[j][i],v);//相当于g[j][i]/g[i][i]%mod;
for(k=i;k<=n;k++)
{
g[j][k]-=mul(tmp,g[i][k]);
g[j][k]=(g[j][k]%mod+mod)%mod;
}
}
}
}
//求出所以的解,存入x数组中
for(i=n-1;i>=0;i--)
{
tmp=0;
for(j=i+1;j<n;j++)
{
tmp+=mul(x[j],g[i][j]);
if(tmp>=mod)
tmp-=mod;
}
tmp=g[i][n]-tmp;
tmp=(tmp%mod+mod)%mod;
x[i]=mul(tmp,inv(g[i][i],mod));
}
}
int main()
{
int T,tt=0;
int i,j;
LL tmp;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
memset(g,0,sizeof(g));
memset(b,0,sizeof(b));
for(i=0;i<=n;i++)
{
for(j=0;j<n;j++)
{
scanf("%I64d",&a[i][j]);
a[i][j]+=diff;//偏移diff
b[i][n]+=mul(a[i][j],a[i][j]);
if (b[i][n]>=mod)
b[i][n]-=mod;
}
}
for(i=0;i<n;i++)
{
for(j=0;j<n;j++)
{
tmp=a[i+1][j]-a[i][j];
tmp=(tmp%mod+mod)%mod;
g[i][j]=mul(tmp,2);
}
g[i][n]=b[i+1][n]-b[i][n];
g[i][n]=(g[i][n]%mod+mod)%mod;
}
Gauss();
printf("Case %d:\n",++tt);
printf("%I64d",x[0]-diff);//减去先前偏移的值。
for (i=1;i<n;i++)
printf(" %I64d",x[i]-diff);
printf("\n");
}
return 0;
}
/*
由题意,列方程组∑(xj-aij)^2=R^2(0<=j<n),共n+1个方程。
存在未知数R,以及二次方,需要降次。逐个与上方方程做差,得到n元一次方程组,共n个方程。
剩下套高斯消元的模板就OK了。
不过这题有几点需要注意:
1.未知数是xi<=1e17,所以无法直接乘除。又∑ai*xi=an和∑ai*xi=an(mod n)(0<=i<=n,xi<n)的解相同
(乘法和加法取余处理下酒能证明)。所以可以%mod来解决。
2.由于需要求逆,所以mod为素数2e17+3。又正常乘法会超过__int64,所以需要用移位乘法。
3.为简单化移位,需要乘数,所以需要添加偏移量diff,根据数学运算可知,只要最后结果减去偏移量即可。
*/
HDU 3571 N-dimensional Sphere的更多相关文章
- HDU 3571 N-dimensional Sphere( 高斯消元+ 同余 )
N-dimensional Sphere Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Oth ...
- HDU 3571 N-dimensional Sphere(高斯消元 数论题)
这道题算是比较综合的了,要用到扩展欧几里得,乘法二分,高斯消元. 看了题解才做出来orz 基本思路是这样,建一个n*(n-1)的行列式,然后高斯消元. 关键就是在建行列式时会暴long long,所以 ...
- HDU.3571.N-dimensional Sphere(高斯消元 模线性方程组)
题目链接 高斯消元详解 /* $Description$ 在n维空间中给定n+1个点,求一个点使得这个点到所有点的距离都为R(R不给出).点的任一坐标|xi|<=1e17. $Solution$ ...
- HDU题解索引
HDU 1000 A + B Problem I/O HDU 1001 Sum Problem 数学 HDU 1002 A + B Problem II 高精度加法 HDU 1003 Maxsu ...
- 高斯消元 分析 && 模板 (转载)
转载自:http://hi.baidu.com/czyuan_acm/item/dce4e6f8a8c45f13d7ff8cda czyuan 先上模板: /* 用于求整数解得方程组. */ #inc ...
- 可用类型的几何对象esriGeometryType Constants
The available kinds of geometry objects. Constant Value Description esriGeometryNull 0 A geometry of ...
- hdu 5727 Necklace dfs+二分图匹配
Necklace/center> 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5727 Description SJX has 2*N mag ...
- HDU 5976 Detachment 打表找规律
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5976 Detachment Time Limit: 4000/2000 MS (Java/Other ...
- HDU 5976 Detachment(拆分)
HDU 5976 Detachment(拆分) 00 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) Problem D ...
随机推荐
- DataTable去除重复行
//抽取dt中的特定列"Region","Cur","Year"组合成新的dat DataTable dat = dt.DefaultVie ...
- iOS 根据图片URL从本地相册获取图片
最近做一个聊天的项目,需要发送图片后读取本地图片显示到列表里.刚开始的时候,天真的认为可以用SDWebImage直接加载,然后并不能行. 于是在网上搜了搜,如何根据从相册获取的UIImagePicke ...
- MySQL5.7.11(ZIP)安装
1.环境变量-系统变量: Path添加:;D:\worksoftware\mysql-5.7.11\bin 2.配置更改:my-default.ini,注意是ANSI编码 添加 #(mysql所在目录 ...
- 联想V480关闭UEFI安装Win7
联想V480关闭UEFI安装Win7 http://www.dadclab.com/archives/3283.jiecao 故事背景 兔兔牛入了一枚Lenovo V480,预装Win8,想换成 ...
- 常见iis错误之一
1.win7配置iis 出现:HTTP 错误 403.14 - Forbidden 打开 IIS 管理器. 在“功能”视图中,双击“目录浏览”. 在“目录浏览”页上,在“操作”窗格中单击“启用”. 确 ...
- 59 pages的Delphi源码
http://www.codesc.net/source/list_10_59.shtml
- android 背景透明度渐变动画
button.setVisibility(View.VISIBLE); // 背景透明度渐变动画 ObjectAnimator alpha = ObjectAnimator.ofFloat(butto ...
- HDU 5919 Sequence II(可持久化线段树)
[题目链接]http://acm.hdu.edu.cn/showproblem.php?pid=5919 [题目大意] 给出一个数列,每次查询数列中,区间非重元素的下标的中位数.查询操作强制在线. [ ...
- POJ 2774 Long Long Message(后缀数组)
[题目链接] http://poj.org/problem?id=2774 [题目大意] 求最长公共子串 [题解] 将两个串中间嵌一个字符相连,求一遍后缀数组 如果排名相邻的两个后缀的开端是分属于两个 ...
- 利用 XPath-jQuery 集锦手册在 XPath 和 jQuery 之间做选择
利用 XPath-jQuery 集锦手册在 XPath 和 jQuery 之间做选择 利用 XPath-jQuery 集锦手册在 XPath 和 jQuery 之间做选择