我们在一个母字符串中查找一个子字符串有很多方法。KMP是一种最常见的改进算法,它可以在匹配过程中失配的情况下,有效地多往后面跳几个字符,加快匹配速度。

当然我们可以看到这个算法针对的是子串有对称属性,如果有对称属性,那么就需要向前查找是否有可以再次匹配的内容。

在KMP算法中有个数组,叫做前缀数组,也有的叫next数组,每一个子串有一个固定的next数组,它记录着字符串匹配过程中失配情况下可以向前多跳几个字符,当然它描述的也是子串的对称程度,程度越高,值越大,当然之前可能出现再匹配的机会就更大。

这个next数组的求法是KMP算法的关键,但不是很好理解,我在这里用通俗的话解释一下,看到别的地方到处是数学公式推导,看得都蛋疼,这个篇文章仅贡献给不喜欢看数学公式又想理解KMP算法的同学。

1、用一个例子来解释,下面是一个子串的next数组的值,可以看到这个子串的对称程度很高,所以next值都比较大

位置i

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

前缀next[i]

0

0

0

0

1

2

3

1

2

3

4

5

6

7

4

0

子串

a

g

c

t

a

g

c

a

g

c

t

a

g

c

t

g

申明一下:下面说的对称不是中心对称,而是中心字符块对称,比如不是abccba,而是abcabc这种对称。

(1)逐个查找对称串。

这个很简单,我们只要循环遍历这个子串,分别看前1个字符,前2个字符,3个... i个 最后到15个。

第1个a无对称,所以对称程度0

前两个ag无对称,所以也是0

依次类推前面0-4都一样是0

前5个agcta,可以看到这个串有一个a相等,所以对称程度为1前6个agctag,看得到ag和ag对成,对称程度为2

这里要注意了,想是这样想,编程怎么实现呢?

只要按照下面的规则:

a、当前一个字符的对称程度为0的时候,只要将当前字符与子串第一个字符进行比较。这个很好理解啊,前面都是0,说明都不对称了,如果多加了一个字符,要对称的话最多是当前的和第一个对称。比如agcta这个里面t的是0,那么后面的a的对称程度只需要看它是不是等于第一个字符a了。

b、按照这个推理,我们就可以总结一个规律,不仅前面是0呀,如果前面一个字符的next值是1,那么我们就把当前字符与子串第二个字符进行比较,因为前面的是1,说明前面的字符已经和第一个相等了,如果这个又与第二个相等了,说明对称程度就是2了。有两个字符对称了。比如上面agctag,倒数第二个a的next是1,说明它和第一个a对称了,接着我们就把最后一个g与第二个g比较,又相等,自然对称成都就累加了,就是2了。

c、按照上面的推理,如果一直相等,就一直累加,可以一直推啊,推到这里应该一点难度都没有吧,如果你觉得有难度说明我写的太失败了。

当然不可能会那么顺利让我们一直对称下去,如果遇到下一个不相等了,那么说明不能继承前面的对称性了,这种情况只能说明没有那么多对称了,但是不能说明一点对称性都没有,所以遇到这种情况就要重新来考虑,这个也是难点所在。

(2)回头来找对称性

这里已经不能继承前面了,但是还是找对称串嘛,最愚蠢的做法大不了写一个子函数,查找这个字符串的最大对称程度,怎么写方法很多吧,比如查找出所有的当前字符串,然后向前走,看是否一直相等,最后走到子串开头,当然这个是最蠢的,我们一般看到的KMP都是优化过的,因为这个串是有规律的。

在这里依然用上面表中一段来举个例子:

位置i=0到14如下,我加的括号只是用来说明问题:

(a g c t a g c )( a g c t a g c) t

我们可以看到这段,最后这个t之前的对称程度分别是:1,2,3,4,5,6,7,倒数第二个c往前看有7个字符对称,所以对称为7。但是到最后这个t就没有继承前面的对称程度next值,所以这个t的对称性就要重新来求。

这里首要要申明几个事实

1、t 如果要存在对称性,那么对称程度肯定比前面这个c 的对称程度小,所以要找个更小的对称,这个不用解释了吧,如果大那么t就继承前面的对称性了。

2、要找更小的对称,必然在对称内部还存在子对称,而且这个t必须紧接着在子对称之后。

如下图说明:

从上面的理论我们就能得到下面的前缀next数组的求解算法。

void SetPrefix(const char *Pattern, int prefix[])

{

int len=CharLen(Pattern);//模式字符串长度。

prefix[0]=0;

for(int i=1; i<len; i++)

{

int k=prefix[i-1];

//不断递归判断是否存在子对称,k=0说明不再有子对称,Pattern[i] != Pattern[k]说明虽然对称,但是对称后面的值和当前的字符值不相等,所以继续递推

while( Pattern[i] != Pattern[k]  &&  k!=0 )

k=prefix[k-1];     //继续递归

if( Pattern[i] == Pattern[k])//找到了这个子对称,或者是直接继承了前面的对称性,这两种都在前面的基础上++

prefix[i]=k+1;

else

prefix[i]=0;       //如果遍历了所有子对称都无效,说明这个新字符不具有对称性,清0

}

}

通过这个说明,估计能够理解KMP的next求法原理了,剩下的就很简单了。我自己也有点晕了,实在不喜欢那些数学公式,所以用形象逻辑思维方法总结了一下。

转自http://blog.csdn.net/yearn520/article/details/6729426#t0

(收藏)KMP算法的前缀next数组最通俗的解释的更多相关文章

  1. KMP 算法中的 next 数组

    KMP 算法中对 next 数组的理解 next 数组的意义 此处 next[j] = k:则有 k 前面的浅蓝色区域和 j 前面的浅蓝色区域相同: next[j] 表示当位置 j 的字符串与主串不匹 ...

  2. 字符串模式匹配之KMP算法图解与 next 数组原理和实现方案

    之前说到,朴素的匹配,每趟比较,都要回溯主串的指针,费事.则 KMP 就是对朴素匹配的一种改进.正好复习一下. KMP 算法其改进思想在于: 每当一趟匹配过程中出现字符比较不相等时,不需要回溯主串的 ...

  3. KMP算法 --- 深入理解next数组

    在KMP算法中有个数组,叫做前缀数组,也有的叫next数组. 每一个子串有一个固定的next数组,它记录着字符串匹配过程中失配情况下可以向前多跳几个字符. 当然它描述的也是子串的对称程度,程度越高,值 ...

  4. KMP算法中求next数组的实质

    在串匹配模式中,KMP算法较蛮力法是高效的算法,我觉得其中最重要的一点就是求next数组: 看了很多资料才弄明白求next数组是怎么求的,我发现我的忘性真的比记性大很多,每次看到KMP算法求next数 ...

  5. 对KMP算法通过代码生成next数组理解

    本文是根据考研数据结构2019版天勤高分笔记理解编写的: 首先给出代码: 1 void getnext(Str substr,int next[]){ 2 int i=0,j=0; 3 next[1] ...

  6. kmp算法中的next数组实例解释

    假设求串′ababaaababaa′的next数组 模式串 a b a b a a a b a b a a 下标 1 2 3 4 5 6 7 8 9 10 11 12 1.前两位:next数组前两位一 ...

  7. 数据结构KMP算法中手算next数组

    总结一下今天的收获(以王道数据结构书上的为例子,虽然我没看它上面的...):其中竖着的一列值是模式串前缀和后缀最长公共前缀. 最后求得的结果符合书上的结果,如果是以-1开头的话就不需要再加1,如果是以 ...

  8. hdoj 3336 Count the string【kmp算法求前缀在原字符串中出现总次数】

    Count the string Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  9. KMP算法中的next数组求解示意图

随机推荐

  1. Android设置Activity背景为透明style

    方法一: 通过Theme.Translucent @android:style/Theme.Translucent @android:style/Theme.Translucent.NoTitleBa ...

  2. 在unity中用鼠标实现在场景中拖动物体,用鼠标滚轮实现缩放

    在场景中添加一个Plan,Camera,Directional Light,Cube.添加两个脚本scrollerScirpt(挂在Camera),CubeDragScript(挂在Cube上). 1 ...

  3. OC KVC总结

    在iOS开发中,我们一般使用set方法或者点语法来修改对象的属性值,比如说 stu.age = 9 与 [stu setAge:9]. KVC(key value coding)键值编码,这是一种间接 ...

  4. UVa202 Repeating Decimals

    #include <stdio.h>#include <map>using namespace std; int main(){    int a, b, c, q, r, p ...

  5. Structs

    1.服务端的运行程序 2.Servlet的三个方法 init service:抽象方法 destroy 3.步骤 (1).在web.xml中 <servlet> <servlet-n ...

  6. UVA 10798 - Be wary of Roses (bfs+hash)

    10798 - Be wary of Roses You've always been proud of your prize rose garden. However, some jealous f ...

  7. 修改LVDS支持1024*600分辨率

    一.在boot中增加LVDS设置分辨率1024*600选项 1.修改文件TQIMX6_android-4.2.2\bootable\bootloader\uboot-imx\common\cmd_me ...

  8. 生产企业如何部署VMware虚拟化的解决方案

    相信生产企业能够清楚的看到,随着生产规模和业务的快速发展,在IT基础设施的投入和使用也不断的增加,但同时也发现没有进行有效整理的硬件效率也就越来 越低,很大程度上浪费了IT资源.所以如何降低成本.提高 ...

  9. phome_ecms_news 数据表字段解释(新闻系统模型-主表)

    http://www.phome.net/doc/manual/extend/html/dbdoc/index.html 字段名 类型 解释 附加说明 id int(11) 信息ID   classi ...

  10. ie6与固定定位fixed,+ 条件注释格式注意

    ie6并不支持position:fixed, ie7+都支持fixed定位, ie6固定定位实现方法1: <!DOCTYPE html> <html> <head> ...