(1)首先下载word2vec,地址:https://code.google.com/p/word2vec/,可能下载的时候有问题,google上不去,那么可以从csdn上面下载。
解压后目录如下:
 
w2v/
`-- trunk
|-- LICENSE
|-- README.txt
|-- compute-accuracy.c
|-- demo-analogy.sh
|-- demo-classes.sh
|-- demo-phrase-accuracy.sh
|-- demo-phrases.sh
|-- demo-train-big-model-v1.sh
|-- demo-word-accuracy.sh
|-- demo-word.sh
|-- distance.c
|-- makefile
|-- questions-phrases.txt
|-- questions-words.txt
|-- word-analogy.c
|-- word2phrase.c
`-- word2vec.c
(2) 进入w2c/trunk文件夹,运行make,编辑文件。从makefile中可以看到,需要编译的文件,主要有两个word2vec.c和distance.c,编译后生成word2vec和distance。但是在编译的时候可能出现问题,参照http://blog.csdn.net/zshunmiao/article/details/15339105,可以对问题进行解决。
makefile内容如下:
(3)然后就可以跑个demo了,运行./demo-word.sh。
demo-word.sh内代码如下:
CC = gcc
#Using -Ofast instead of -O3 might result in faster code, but is supported only by newer GCC versions
CFLAGS = -lm -pthread -O3 -march=native -Wall -funroll-loops -Wno-unused-result all: word2vec word2phrase distance word-analogy compute-accuracy word2vec : word2vec.c
$(CC) word2vec.c -o word2vec $(CFLAGS)
word2phrase : word2phrase.c
$(CC) word2phrase.c -o word2phrase $(CFLAGS)
distance : distance.c
$(CC) distance.c -o distance $(CFLAGS)
word-analogy : word-analogy.c
$(CC) word-analogy.c -o word-analogy $(CFLAGS)
compute-accuracy : compute-accuracy.c
$(CC) compute-accuracy.c -o compute-accuracy $(CFLAGS)
chmod +x *.sh clean:
rm -rf word2vec word2phrase distance word-analogy compute-accuracy

然后输入单词,就可以计算其近义词,并按照顺序排列。
Enter word or sentence (EXIT to break): china       

Word: china  Position in vocabulary: 

                                              Word       Cosine distance
------------------------------------------------------------------------
japan 0.648631
taiwan 0.630534
manchuria 0.599535
tibet 0.583566
prc 0.560898
kalmykia 0.558937
xiamen 0.556037
jiang 0.553501
chinese 0.547065
liao 0.543676
india 0.536273
korea 0.534758
roc 0.530741
thailand 0.529334
hunan 0.527629
liang 0.527374
shanghai 0.526314
chongqing 0.525559
nanjing 0.521342
yunnan 0.518669
wuhan 0.516914
zhao 0.513246
xinjiang 0.509939
tuva 0.507322
guangdong 0.507288
hubei 0.505540
guangxi 0.501068
taipei 0.497673
macao 0.497303
hainan 0.494808
shandong 0.493323
shenzhen 0.491871
hangzhou 0.489323
balhae 0.488846
guangzhou 0.486907
fujian 0.485473
zhejiang 0.485011
harbin 0.483171

word2vec配置到使用的更多相关文章

  1. 用中文把玩Google开源的Deep-Learning项目word2vec

    google最近新开放出word2vec项目,该项目使用deep-learning技术将term表示为向量,由此计算term之间的相似度,对term聚类等,该项目也支持phrase的自动识别,以及与t ...

  2. Google开源的Deep-Learning项目word2vec

    用中文把玩Google开源的Deep-Learning项目word2vec   google最近新开放出word2vec项目,该项目使用deep-learning技术将term表示为向量,由此计算te ...

  3. 学习笔记CB011:lucene搜索引擎库、IKAnalyzer中文切词工具、检索服务、查询索引、导流、word2vec

    影视剧字幕聊天语料库特点,把影视剧说话内容一句一句以回车换行罗列三千多万条中国话,相邻第二句很可能是第一句最好回答.一个问句有很多种回答,可以根据相关程度以及历史聊天记录所有回答排序,找到最优,是一个 ...

  4. 利用jieba,word2vec,LR进行搜狐新闻文本分类

    一.简介 1)jieba 中文叫做结巴,是一款中文分词工具,https://github.com/fxsjy/jieba 2)word2vec 单词向量化工具,https://radimrehurek ...

  5. NLP:Gensim库之word2vec

    Gensim是一款开源的第三方Python工具包,用于从原始的非结构化的文本中,无监督地学习到文本隐层的主题向量表达.它支持包括TF-IDF,LSA,LDA,和word2vec在内的多种主题模型算法, ...

  6. word2vec参数理解

    之前写了对word2vec的一些简单理解,实践过程中需要对其参数有较深的了解: class gensim.models.word2vec.Word2Vec(sentences=None,size=10 ...

  7. word2vec模型评估方案

    1.word2vec参数详解 · sentences:可以是一个·ist,对于大语料集,建议使用BrownCorpus,Text8Corpus或·ineSentence构建.· sg: 用于设置训练算 ...

  8. 语义分析之ansj_seg+word2vec的使用

    语义分析,我是一个初学者,有很多东西,需要理论和实践结合后,才能理解的相对清楚. 今天,我就在语义理解中基于背景语料的情况,实现语义上下文的预测,比如,我说“王宝强”,你会想到什么?别告诉没有“马蓉” ...

  9. 机器学习之路: python 实践 word2vec 词向量技术

    git: https://github.com/linyi0604/MachineLearning 词向量技术 Word2Vec 每个连续词汇片段都会对后面有一定制约 称为上下文context 找到句 ...

随机推荐

  1. 《JavaScript 闯关记》之语句

    表达式在 JavaScript 中是短语,那么语句就是整句命令.表达式用来计算出一个值,语句用来执行以使某件事发生.从本质上看,语句定义了 JavaScript 中的主要语法,语句通常使用一或多个关键 ...

  2. zepto的touch.js左右滑动存在一些问题,用百度的touch.js代替

    这几天用zepto想写一个移动端的活动,在实现左右滑动触发动画时,发现zepto的touch.js在ios的微信上有问题. 问题描述:左右滑动时如果手指没有一直跟频幕贴着(在手机上滑动时,如果手指不是 ...

  3. PHP学习笔记一

    <html> <head> <title></title> <meta http-equiv="content-type" c ...

  4. JSP总结2 配置开发环境和firstjsp

    JDK的下载 JAVA_HOME ,CLASSPATH,PATH 的配置,根据安装路径. 然后java -version检测配置OK. 编写helloworld.java   放置在同JDK 盘里.j ...

  5. 从汇编看c++的虚拟继承以及其内存布局(一)

    先看第一种最简单的情形,所有类中没有任何虚函数的菱形继承. 下面是c++源码: class Top {//虚基类 public: int i; Top(int ii) { i = ii; } }; c ...

  6. 认识Java数组(一)

    特别想喜欢一个寓言故事: 噢,它明白了,河水既没有牛伯伯说的那么浅,也没有小松鼠说的那么深,只有自己亲自试过才知道!道听途说永远只能看到表面现象,只有亲自试过了,才知道它的深浅!!!!! 言归正传: ...

  7. [汇编语言]-第七章 用[bx+idata]的方式进行数组的处理

    1- 转化为大写 方法一: assume cs:code,ds:data data segment db 'BaSiC' db 'MinIX' data ends code segment start ...

  8. MYSQL delete性能优化!

    优化项 1. low_priority 当没有连接文章表时才进行删除操作. delete low_priority from T; 优化项 2. quick 当删除行时并不删除行的索引.如果再次插入这 ...

  9. shell基础——字符串处理(转载)

    Shell的字符串处理   1 得到长度   %x="abcd"  #方法一      %expr length $x      4  # 方法二      %echo ${#x} ...

  10. Mysql explain 查看分区表

    mysql> explain select * from ClientActionTrack where startTime>'2016-08-25 00:00:00' and start ...