(1)首先下载word2vec,地址:https://code.google.com/p/word2vec/,可能下载的时候有问题,google上不去,那么可以从csdn上面下载。
解压后目录如下:
 
w2v/
`-- trunk
|-- LICENSE
|-- README.txt
|-- compute-accuracy.c
|-- demo-analogy.sh
|-- demo-classes.sh
|-- demo-phrase-accuracy.sh
|-- demo-phrases.sh
|-- demo-train-big-model-v1.sh
|-- demo-word-accuracy.sh
|-- demo-word.sh
|-- distance.c
|-- makefile
|-- questions-phrases.txt
|-- questions-words.txt
|-- word-analogy.c
|-- word2phrase.c
`-- word2vec.c
(2) 进入w2c/trunk文件夹,运行make,编辑文件。从makefile中可以看到,需要编译的文件,主要有两个word2vec.c和distance.c,编译后生成word2vec和distance。但是在编译的时候可能出现问题,参照http://blog.csdn.net/zshunmiao/article/details/15339105,可以对问题进行解决。
makefile内容如下:
(3)然后就可以跑个demo了,运行./demo-word.sh。
demo-word.sh内代码如下:
CC = gcc
#Using -Ofast instead of -O3 might result in faster code, but is supported only by newer GCC versions
CFLAGS = -lm -pthread -O3 -march=native -Wall -funroll-loops -Wno-unused-result all: word2vec word2phrase distance word-analogy compute-accuracy word2vec : word2vec.c
$(CC) word2vec.c -o word2vec $(CFLAGS)
word2phrase : word2phrase.c
$(CC) word2phrase.c -o word2phrase $(CFLAGS)
distance : distance.c
$(CC) distance.c -o distance $(CFLAGS)
word-analogy : word-analogy.c
$(CC) word-analogy.c -o word-analogy $(CFLAGS)
compute-accuracy : compute-accuracy.c
$(CC) compute-accuracy.c -o compute-accuracy $(CFLAGS)
chmod +x *.sh clean:
rm -rf word2vec word2phrase distance word-analogy compute-accuracy

然后输入单词,就可以计算其近义词,并按照顺序排列。
Enter word or sentence (EXIT to break): china       

Word: china  Position in vocabulary: 

                                              Word       Cosine distance
------------------------------------------------------------------------
japan 0.648631
taiwan 0.630534
manchuria 0.599535
tibet 0.583566
prc 0.560898
kalmykia 0.558937
xiamen 0.556037
jiang 0.553501
chinese 0.547065
liao 0.543676
india 0.536273
korea 0.534758
roc 0.530741
thailand 0.529334
hunan 0.527629
liang 0.527374
shanghai 0.526314
chongqing 0.525559
nanjing 0.521342
yunnan 0.518669
wuhan 0.516914
zhao 0.513246
xinjiang 0.509939
tuva 0.507322
guangdong 0.507288
hubei 0.505540
guangxi 0.501068
taipei 0.497673
macao 0.497303
hainan 0.494808
shandong 0.493323
shenzhen 0.491871
hangzhou 0.489323
balhae 0.488846
guangzhou 0.486907
fujian 0.485473
zhejiang 0.485011
harbin 0.483171

word2vec配置到使用的更多相关文章

  1. 用中文把玩Google开源的Deep-Learning项目word2vec

    google最近新开放出word2vec项目,该项目使用deep-learning技术将term表示为向量,由此计算term之间的相似度,对term聚类等,该项目也支持phrase的自动识别,以及与t ...

  2. Google开源的Deep-Learning项目word2vec

    用中文把玩Google开源的Deep-Learning项目word2vec   google最近新开放出word2vec项目,该项目使用deep-learning技术将term表示为向量,由此计算te ...

  3. 学习笔记CB011:lucene搜索引擎库、IKAnalyzer中文切词工具、检索服务、查询索引、导流、word2vec

    影视剧字幕聊天语料库特点,把影视剧说话内容一句一句以回车换行罗列三千多万条中国话,相邻第二句很可能是第一句最好回答.一个问句有很多种回答,可以根据相关程度以及历史聊天记录所有回答排序,找到最优,是一个 ...

  4. 利用jieba,word2vec,LR进行搜狐新闻文本分类

    一.简介 1)jieba 中文叫做结巴,是一款中文分词工具,https://github.com/fxsjy/jieba 2)word2vec 单词向量化工具,https://radimrehurek ...

  5. NLP:Gensim库之word2vec

    Gensim是一款开源的第三方Python工具包,用于从原始的非结构化的文本中,无监督地学习到文本隐层的主题向量表达.它支持包括TF-IDF,LSA,LDA,和word2vec在内的多种主题模型算法, ...

  6. word2vec参数理解

    之前写了对word2vec的一些简单理解,实践过程中需要对其参数有较深的了解: class gensim.models.word2vec.Word2Vec(sentences=None,size=10 ...

  7. word2vec模型评估方案

    1.word2vec参数详解 · sentences:可以是一个·ist,对于大语料集,建议使用BrownCorpus,Text8Corpus或·ineSentence构建.· sg: 用于设置训练算 ...

  8. 语义分析之ansj_seg+word2vec的使用

    语义分析,我是一个初学者,有很多东西,需要理论和实践结合后,才能理解的相对清楚. 今天,我就在语义理解中基于背景语料的情况,实现语义上下文的预测,比如,我说“王宝强”,你会想到什么?别告诉没有“马蓉” ...

  9. 机器学习之路: python 实践 word2vec 词向量技术

    git: https://github.com/linyi0604/MachineLearning 词向量技术 Word2Vec 每个连续词汇片段都会对后面有一定制约 称为上下文context 找到句 ...

随机推荐

  1. 理解MVC路由配置(转)

    在上一篇文章中,我简短的谈了一下MVC的底层运行机制,如果对MVC还不是很了解的朋友,可以作为入门的参照.接下来,我开始介绍关于URL路由的相关知识.URL路由不是MVC独有的,相反它是独立于MVC而 ...

  2. 查看并设置oracle并发连接数

    1.Sql代码1.select count(*) from v$process  select count(*) from v$process --当前的数据库连接数2.Sql代码1.select v ...

  3. flex与js相互调用

    1.flex调用js方法 调用方法例如:ExternalInterface.call("UploadComplete",oldName,uidName,_dir+"/&q ...

  4. 【IOS学习基础】归档和解档

    一.归档介绍 1.归档是指用某种格式来保存一个或多个对象,以便以后还原这些对象的过程.归档是将数据持久化的一种方式(所谓数据持久化,就是指在IOS开发过程中,将数据保存到本地,能够让程序的运行更加流畅 ...

  5. Nginx反向代理匹配部分二级域名或二级目录配置

    server { charset utf-; client_max_body_size 128M; # Add index.php to the list if you are using PHP i ...

  6. juce viewport使用

    1.设置内容组件 void PropertyPanel::init() { messageWhenEmpty = TRANS("(nothing selected)"); addA ...

  7. java中的xpath,读取xml文档。

    1,入门 XPath即为XML路径语言(XML Path Language),它是一种用来确定XML文档中某部分位置的语言. XPath基于XML的树状结构,提供在数据结构树中找寻节点的能力.起初 X ...

  8. Git 添加空文件夹的方法

    转自stackoverflow: http://stackoverflow.com/questions/115983/how-do-i-add-an-empty-directory-to-a-git- ...

  9. FMDB将对象放进数据库[二](使用runtime)

    @import url(http://i.cnblogs.com/Load.ashx?type=style&file=SyntaxHighlighter.css);@import url(/c ...

  10. SQL Server 查看表定义的 2 种方法

    方法 1. 用SQL Server Management Studio 第一步找到要查看的表,右键 第二步点设计 方法 2. sp_help @objname = 'tableName' execut ...