/*
(x*c+a)%(2^k)==b →(x*c)%(2^k)==b-a
满足定理:
推论1:方程ax=b(mod n)对于未知量x有解,当且仅当gcd(a,n) | b。
推论2:方程ax=b(mod n)或者对模n有d个不同的解,其中d=gcd(a,n),或者无解。 定理1:设d=gcd(a,n),假定对整数x和y满足d=ax+by(比如用扩展Euclid算法求出的一组解)。
如果d | b,则方程ax=b(mod n)有一个解x0满足x0=x*(b/d) mod n 。特别的设e=x0+n,
方程ax=b(mod n)的最小整数解x1=e mod (n/d),最大整数解x2=x1+(d-1)*(n/d)。 定理2:假设方程ax=b(mod n)有解,且x0是方程的任意一个解,则该方程对模n恰有d个不同的解(d=gcd(a,n)),
分别为:xi=x0+i*(n/d) mod n 。
*/
#include<stdio.h>
__int64 ext_gcd(__int64 a,__int64 b,__int64 &x,__int64 &y)
{
if(b==){
x=;y=; return a;
} __int64 d=ext_gcd(b,a%b,x,y);
__int64 t = x;
x = y;
y = t - a / b * y;
return d;
}
__int64 modular_linear(__int64 a,__int64 b,__int64 n){
__int64 d,e,x,y;
d=ext_gcd(a,n,x,y);
if(b%d)
return -;
e=x*(b/d)%n+n;
return e%(n/d);
}
int main(void)
{
__int64 d,a,b,c,k;
while(scanf("%lld %lld %lld %lld",&a,&b,&c,&k),a||b||c||k){
d=modular_linear(c,b-a,(__int64)<<k);
if(d==-)
puts("FOREVER");
else
printf("%lld\n",d);
}
return ;
}

POJ 2115 模线性方程 ax=b(mod n)的更多相关文章

  1. POJ2115——C Looooops(扩展欧几里德+求解模线性方程)

    C Looooops DescriptionA Compiler Mystery: We are given a C-language style for loop of type for (vari ...

  2. POJ 2115 C Looooops(模线性方程)

    http://poj.org/problem?id=2115 题意: 给你一个变量,变量初始值a,终止值b,每循环一遍加c,问一共循环几遍终止,结果mod2^k.如果无法终止则输出FOREVER. 思 ...

  3. POJ - 2115 C Looooops(扩展欧几里德求解模线性方程(线性同余方程))

    d.对于这个循环, for (variable = A; variable != B; variable += C) statement; 给出A,B,C,求在k位存储系统下的循环次数. 例如k=4时 ...

  4. POJ 2142 TheBalance 模线性方程求解

    题目大意: 就是将两种砝码左右摆放,能够在物品放置在天平上时保持平衡 很容易得到 ax + by = t的模线性方程 按题目要求,希望首先满足 |x| + |y| 最小 , 如果有多种情况,再满足所有 ...

  5. C Looooops(扩展欧几里得求模线性方程)

    http://poj.org/problem?id=2115 题意:对于C的循环(for i = A; i != B; i+=C)问在k位存储系统内循环多少次结束: 若循环有限次能结束输出次数,否则输 ...

  6. poj_2115C Looooops(模线性方程)

    题目链接:http://poj.org/problem?id=2115 C Looooops Time Limit: 1000MS   Memory Limit: 65536K Total Submi ...

  7. POJ 2115 C Looooops(扩展欧几里得应用)

    题目地址:POJ 2115 水题. . 公式非常好推.最直接的公式就是a+n*c==b+m*2^k.然后能够变形为模线性方程的样子,就是 n*c+m*2^k==b-a.即求n*c==(b-a)mod( ...

  8. POJ2115 C Looooops ——模线性方程(扩展gcd)

    题目链接:http://poj.org/problem?id=2115 C Looooops Time Limit: 1000MS   Memory Limit: 65536K Total Submi ...

  9. C Looooops(扩展欧几里得+模线性方程)

    http://poj.org/problem?id=2115 题意:给出A,B,C和k(k表示变量是在k位机下的无符号整数),判断循环次数,不能终止输出"FOREVER". 即转化 ...

随机推荐

  1. Android使用VideoView播放网络视频

    Android支持播放网络上的视频.在播放网络上的视频时,牵涉到视频流的传输,往往有两种协议,一种是HTTP,一种是RTSP.这 两种协议最大的不同是,HTTP协议,不支持实时流媒体的播放,而RTSP ...

  2. linux去掉svn里记住的用户名密码

    去掉svn里记住的用户名密码   删除掉 c:\Documents and Settings\administrator\ApplicationData\Subversion\auth\svn.sim ...

  3. javascript数组排序-----1

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  4. HTML之学习笔记(七)列表

    html的列表分为有序列表,无序列表和自定义列表 1.有序列表(order list) 代码演示 <ol type="a"> <li>第一项数据</l ...

  5. prototype演变

    setp1 var Person = function () {}; //构造器 var p = new Person(); setp1 演变: var Person = function () {} ...

  6. ios不同版本下的UILabel自动换行问题

    @interface ThreadPreviewCell : UITableViewCell @property (nonatomic, strong) UILabel *titleLabel; @e ...

  7. DataSet和DataTable详解

    先构建一个结构与用户请求数据结构相同的DataTable,然后将用户的请求数据填充到构建好的DataTable中,最后将DataTable添加到DataSet中. DataTable,,DataCol ...

  8. Java 遍历文件下jpg图片并解析图片

      package filetest; import java.io.File; import java.io.FilenameFilter; import java.io.IOException; ...

  9. clip原理

    1.clip的概述: clip是修剪之意 clip有4个属性值:inherit auto rect(20px,40px,60px,0px) !important 其中有作用的仅rect这个属性值,着重 ...

  10. 一周学会Mootools 1.4中文教程:(7)汇总收尾

    转眼之间已经第七课了,这也将成为最后一课,如果这7课下来您感觉水平没有达到预想的水平,没关系您可以继续关注本站的博文,我会陆续发一些类似的文章帮您提升水平,另外我最近打算和群里的几个Mootools爱 ...