有关Gcd,Lcm的一点小结论
先介绍两个:
大数的Gcd
Stein+欧几里德
function stein(a,b:int64):int64;
begin
if a<b then exit(stein(b,a));
if b= then exit(a);
if ((a and )=) and ((b and )=) then exit(stein(a>>,b>>)<<);
if (a and )= then exit(stein(a>>,b));
if (b and )= then exit(stein(a,b>>));
exit(stein((a+b)>>,(a-b)>>));
end;
小数的Gcd
辗转相除法
function stein(a,b:int64):int64;
begin
if a<b then exit(stein(b,a));
if b= then exit(a);
if ((a and )=) and ((b and )=) then exit(stein(a>>,b>>)<<);
if (a and )= then exit(stein(a>>,b));
if (b and )= then exit(stein(a,b>>));
exit(stein((a+b)>>,(a-b)>>));
end;
我们经常要计算到lcm,我们有一个特别优雅的结论
a*b/gcd(a,b)=lcm(a,b)
如此我们只需计算gcd即可,当a,b比较大的时候是一个很好的优化
下面来看一题
题目描述

输入
对于每个测试点:
第一行包括一个整数T,代表数据组数。
对于接下来的每一组数据,包括两行。
第一行,为一个整数N 代表序列长度。
第二行,为用空格分隔的N 个整数Ai,分别代表每一个材料计算好的权值。
输出
对于第i 组数据,你需要输出组数标示“Case i: ” 其中i 表示当前的数据组数。
紧接着,需要输出所要计算的参数α与β,以空格分隔。
如果不存在所要求的子串,对应的参数α或β 设为-1。
样例输入
2
7 2
4
2 2 3 4
3
2 2 4
样例输出
Case 2: 4 2
Case 3: -1 -1
提示
.png)
这题大概意思要你分别求两个最长子串,使gcd(al,a2,....,ar)=1 lcm(al,.....ar)=al*....*ar;
gcd好做,读入时不断gcd(a[i],a[i+1]),如果存在gcd(a[i],a[i+1])=1则整串互质,即ans:=n;否则就无解了
第二问Dp做法
f[i]=max(f[i-1]+1,i-k+1); k为最后一个不于ai互质的数的编号。
答案就是max(f[1].....,f[n-1],f[n]);
复杂度O(n)
第二种解法:维护队列
1 维护一个这样的队列使得队列中的数两两互质
2 从左到右依次让元素入队如果队列中一旦不互质,则让队首出队,直到满足两两互质,在这过程中记录元素个数即可
有关Gcd,Lcm的一点小结论的更多相关文章
- Mathematics:GCD & LCM Inverse(POJ 2429)
根据最大公约数和最小公倍数求原来的两个数 题目大意,不翻译了,就是上面链接的意思. 具体思路就是要根据数论来,设a和b的GCD(最大公约数)和LCM(最小公倍数),则a/GCD*b/GCD=LCM/G ...
- 数论入门2——gcd,lcm,exGCD,欧拉定理,乘法逆元,(ex)CRT,(ex)BSGS,(ex)Lucas,原根,Miller-Rabin,Pollard-Rho
数论入门2 另一种类型的数论... GCD,LCM 定义\(gcd(a,b)\)为a和b的最大公约数,\(lcm(a,b)\)为a和b的最小公倍数,则有: 将a和b分解质因数为\(a=p1^{a1}p ...
- 洛谷 UVA11388 GCD LCM
UVA11388 GCD LCM Description of the title PDF The GCD of two positive integers is the largest intege ...
- POJ 2429 GCD & LCM Inverse(Pollard_Rho+dfs)
[题目链接] http://poj.org/problem?id=2429 [题目大意] 给出最大公约数和最小公倍数,满足要求的x和y,且x+y最小 [题解] 我们发现,(x/gcd)*(y/gcd) ...
- hdu-3071 Gcd & Lcm game---质因数分解+状态压缩+线段树
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=3071 题目大意: 给定一个长度为n的序列m次操作,操作的种类一共有三种 查询 L :查询一个区间的所 ...
- UVA11388 GCD LCM
(链接点这儿) 题目: The GCD of two positive integers is the largest integer that divides both the integers w ...
- POJ 2429 GCD & LCM Inverse (Pollard rho整数分解+dfs枚举)
题意:给出a和b的gcd和lcm,让你求a和b.按升序输出a和b.若有多组满足条件的a和b,那么输出a+b最小的.思路:lcm=a*b/gcd lcm/gcd=a/gcd*b/gcd 可知a/gc ...
- [POJ 2429] GCD & LCM Inverse
GCD & LCM Inverse Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 10621 Accepted: ...
- 关于win8开发的一点小总结
我今天做画面的时候,发现了一点小问题. 我在xmal文件里面加了一个CheckBox控件,设置IsChecked属性为True,并添加了Checked事件.Checked事件里面有对另外一个TextB ...
随机推荐
- 自己配置的WAMP环境,扩展oracle函数库(oci)
同事昨天接到一个任务,要用php处理oracle数据库的内容,但是php打开oracle扩展不是像mysql那样直接用就行,需要下一点东西才能打开 第一步 需要到oracle官方下载一个install ...
- C#两路list数组归并去重
两个相同类型已排序数据进行合并,虽然list数组中有AddRange方法,但它只是把第二个数组从第一个数组末尾插入,假如两个数组有重复数据,保存进去.还有Union方法合并去重,首先会从第一个数组进行 ...
- [LeetCode]题解(python):146-LRU Cache
题目来源: https://leetcode.com/problems/lru-cache/ 实现一个LRU缓存.直接上代码. 代码(python): class LRUCache(object): ...
- 查询linux发行版本号方法总结
了解Linux发行版本的版本号是一项非常重要的事情,大多数软件对系统的版本都有要求,发行版本号与软件不匹配,软件将无法安装或者无法使用.这边集合市面上流行的Linux发行版本版本号查询方法.有了这 ...
- redsocks 设置全局代理
分享一下我的经验, http://lilydjwg.is-programmer.com/2014/2/7/linux-really-global-http-proxy.42701.html 1. 优点 ...
- 在线词典php
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...
- 得到client真IP住址
1.引进的必要性log4j-1.2.14.jar package org.ydd.test; import java.util.Enumeration; import javax.servlet.ht ...
- 1.Solution的Build、Rebuild和Clean
大家好,我是原文,这篇随笔是对原文的翻译以及自己的体会. 做程序员没追求的话是永远找不到女朋友的,当然有追求也找不到,这个先不提,好在有追求的时候我是充实而且开心的.现在我们的问题是,每天调试项目,在 ...
- win8.1 安装webaccess遇到的写访问权限错误
大学的时候闲暇时间都用来玩游戏了,现在工作了,就把工作中遇到的问题和学习心得跟大家共享下,若有不对的地方欢迎指出,谢谢! 前几天突然想换用vs2013开发,就重装了win8.1系统,在新系统上安装we ...
- cmd命令行--切换盘符