有关Gcd,Lcm的一点小结论
先介绍两个:
大数的Gcd
Stein+欧几里德
function stein(a,b:int64):int64;
begin
if a<b then exit(stein(b,a));
if b= then exit(a);
if ((a and )=) and ((b and )=) then exit(stein(a>>,b>>)<<);
if (a and )= then exit(stein(a>>,b));
if (b and )= then exit(stein(a,b>>));
exit(stein((a+b)>>,(a-b)>>));
end;
小数的Gcd
辗转相除法
function stein(a,b:int64):int64;
begin
if a<b then exit(stein(b,a));
if b= then exit(a);
if ((a and )=) and ((b and )=) then exit(stein(a>>,b>>)<<);
if (a and )= then exit(stein(a>>,b));
if (b and )= then exit(stein(a,b>>));
exit(stein((a+b)>>,(a-b)>>));
end;
我们经常要计算到lcm,我们有一个特别优雅的结论
a*b/gcd(a,b)=lcm(a,b)
如此我们只需计算gcd即可,当a,b比较大的时候是一个很好的优化
下面来看一题
题目描述
输入
对于每个测试点:
第一行包括一个整数T,代表数据组数。
对于接下来的每一组数据,包括两行。
第一行,为一个整数N 代表序列长度。
第二行,为用空格分隔的N 个整数Ai,分别代表每一个材料计算好的权值。
输出
对于第i 组数据,你需要输出组数标示“Case i: ” 其中i 表示当前的数据组数。
紧接着,需要输出所要计算的参数α与β,以空格分隔。
如果不存在所要求的子串,对应的参数α或β 设为-1。
样例输入
2
7 2
4
2 2 3 4
3
2 2 4
样例输出
Case 2: 4 2
Case 3: -1 -1
提示
这题大概意思要你分别求两个最长子串,使gcd(al,a2,....,ar)=1 lcm(al,.....ar)=al*....*ar;
gcd好做,读入时不断gcd(a[i],a[i+1]),如果存在gcd(a[i],a[i+1])=1则整串互质,即ans:=n;否则就无解了
第二问Dp做法
f[i]=max(f[i-1]+1,i-k+1); k为最后一个不于ai互质的数的编号。
答案就是max(f[1].....,f[n-1],f[n]);
复杂度O(n)
第二种解法:维护队列
1 维护一个这样的队列使得队列中的数两两互质
2 从左到右依次让元素入队如果队列中一旦不互质,则让队首出队,直到满足两两互质,在这过程中记录元素个数即可
有关Gcd,Lcm的一点小结论的更多相关文章
- Mathematics:GCD & LCM Inverse(POJ 2429)
根据最大公约数和最小公倍数求原来的两个数 题目大意,不翻译了,就是上面链接的意思. 具体思路就是要根据数论来,设a和b的GCD(最大公约数)和LCM(最小公倍数),则a/GCD*b/GCD=LCM/G ...
- 数论入门2——gcd,lcm,exGCD,欧拉定理,乘法逆元,(ex)CRT,(ex)BSGS,(ex)Lucas,原根,Miller-Rabin,Pollard-Rho
数论入门2 另一种类型的数论... GCD,LCM 定义\(gcd(a,b)\)为a和b的最大公约数,\(lcm(a,b)\)为a和b的最小公倍数,则有: 将a和b分解质因数为\(a=p1^{a1}p ...
- 洛谷 UVA11388 GCD LCM
UVA11388 GCD LCM Description of the title PDF The GCD of two positive integers is the largest intege ...
- POJ 2429 GCD & LCM Inverse(Pollard_Rho+dfs)
[题目链接] http://poj.org/problem?id=2429 [题目大意] 给出最大公约数和最小公倍数,满足要求的x和y,且x+y最小 [题解] 我们发现,(x/gcd)*(y/gcd) ...
- hdu-3071 Gcd & Lcm game---质因数分解+状态压缩+线段树
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=3071 题目大意: 给定一个长度为n的序列m次操作,操作的种类一共有三种 查询 L :查询一个区间的所 ...
- UVA11388 GCD LCM
(链接点这儿) 题目: The GCD of two positive integers is the largest integer that divides both the integers w ...
- POJ 2429 GCD & LCM Inverse (Pollard rho整数分解+dfs枚举)
题意:给出a和b的gcd和lcm,让你求a和b.按升序输出a和b.若有多组满足条件的a和b,那么输出a+b最小的.思路:lcm=a*b/gcd lcm/gcd=a/gcd*b/gcd 可知a/gc ...
- [POJ 2429] GCD & LCM Inverse
GCD & LCM Inverse Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 10621 Accepted: ...
- 关于win8开发的一点小总结
我今天做画面的时候,发现了一点小问题. 我在xmal文件里面加了一个CheckBox控件,设置IsChecked属性为True,并添加了Checked事件.Checked事件里面有对另外一个TextB ...
随机推荐
- Flink资料(4) -- 类型抽取和序列化
类型抽取和序列化 本文翻译自Type Extraction and Serialization Flink处理类型的方式比较特殊,包括它自己的类型描述,一般类型抽取和类型序列化框架.该文档描述这些概念 ...
- MYSQL 数据表备份
方法: mysqldump -uuser_name -p db_name table_nameList >save_file_path 例子: 备份分studio数据库的student 表 my ...
- oracle数据库删除数据Delete语句和Truncate语句的对比
oracle数据库删除数据Delete语句和Truncate语句的对比 当表中的数据不需要时,则应该删除该数据并释放所占用的空间,删除表中的数据可以使用Delete语句或者Truncate语句,下面分 ...
- 如何解决”无法将类型为“System.DateTime”的对象强制转换为类型“System.String”。“
字段Time在数据库中为datetime类型 dr.GetString(3).ToString() dr.GetString(3).ToString() => dr.GetDateTime(3) ...
- docker 私有仓库镜像的存储位置
docker 私有仓库的镜像 是存储在5739360d1030 registry "docker-registry" 3 days ago Up 28 hours 0.0.0.0: ...
- windows设置临时环境变量path
所有在命令行下对环境变量的修改只对当前窗口有效,不是永久性的修改. 1.查看当前所有可以的环境变量:输入set查看 2.查看某个环境变量:输入 set 变量名 例如 set path 3.修改环境变量 ...
- [LeetCode][Python]Regular Expression Matching
# -*- coding: utf8 -*-'''https://oj.leetcode.com/problems/regular-expression-matching/ Implement reg ...
- codeforces #286 Div.2 C DP总是以意外的方式打败我
题目大意:30001个岛排成一排,编号从0到30000,一共有n个宝物分散在这些岛上,一只猪最开始从0跳到d,之后每一步跳的步长和上一步相差不超过1,第二步步长就是d-1,d,d+1,第二步的位置就是 ...
- 调试qemu
最近需要给libvirt增加一个新feature,该feature基于qemu的最新代码. 我需要关心的: http://wiki.qemu.org/Features/Migration 需要自己编译 ...
- [置顶] block一点也不神秘————如何利用block进行回调
我们在开发中常常会用到函数回调,你可以用通知来替代回调,但是大多数时候回调是比通知方便的,所以何乐而不为呢?如果你不知道回调使用的场景,我们来假设一下: 1.我现在玩手机 2.突然手机没有电了 3.我 ...