C. Coloring Trees
 

ZS the Coder and Chris the Baboon has arrived at Udayland! They walked in the park where n trees grow. They decided to be naughty and color the trees in the park. The trees are numbered with integers from 1 to n from left to right.

Initially, tree i has color ci. ZS the Coder and Chris the Baboon recognizes only m different colors, so 0 ≤ ci ≤ m, where ci = 0 means that tree i is uncolored.

ZS the Coder and Chris the Baboon decides to color only the uncolored trees, i.e. the trees with ci = 0. They can color each of them them in any of the m colors from 1 to m. Coloring the i-th tree with color j requires exactly pi, j litres of paint.

The two friends define the beauty of a coloring of the trees as the minimum number of contiguous groups (each group contains some subsegment of trees) you can split all the n trees into so that each group contains trees of the same color. For example, if the colors of the trees from left to right are 2, 1, 1, 1, 3, 2, 2, 3, 1, 3, the beauty of the coloring is 7, since we can partition the trees into 7contiguous groups of the same color : {2}, {1, 1, 1}, {3}, {2, 2}, {3}, {1}, {3}.

ZS the Coder and Chris the Baboon wants to color all uncolored trees so that the beauty of the coloring is exactly k. They need your help to determine the minimum amount of paint (in litres) needed to finish the job.

Please note that the friends can't color the trees that are already colored.

Input

The first line contains three integers, nm and k (1 ≤ k ≤ n ≤ 100, 1 ≤ m ≤ 100) — the number of trees, number of colors and beauty of the resulting coloring respectively.

The second line contains n integers c1, c2, ..., cn (0 ≤ ci ≤ m), the initial colors of the trees. ci equals to 0 if the tree number i is uncolored, otherwise the i-th tree has color ci.

Then n lines follow. Each of them contains m integers. The j-th number on the i-th of them line denotes pi, j (1 ≤ pi, j ≤ 109) — the amount of litres the friends need to color i-th tree with color jpi, j's are specified even for the initially colored trees, but such trees still can't be colored.

Output

Print a single integer, the minimum amount of paint needed to color the trees. If there are no valid tree colorings of beauty k, print  - 1.

Examples
input
3 2 2
0 0 0
1 2
3 4
5 6
output
10
 
Note

In the first sample case, coloring the trees with colors 2, 1, 1 minimizes the amount of paint used, which equals to 2 + 3 + 5 = 10. Note that 1, 1, 1 would not be valid because the beauty of such coloring equals to 1 ({1, 1, 1} is a way to group the trees into a single group of the same color).

In the second sample case, all the trees are colored, but the beauty of the coloring is 3, so there is no valid coloring, and the answer is - 1.

In the last sample case, all the trees are colored and the beauty of the coloring matches k, so no paint is used and the answer is 0.

题意:

  给你n棵树

  每个树上可能已经填了颜色,可能没有填颜色(0)

  现在告诉你有m种颜色,让分成 K 块

  给你每棵树填每种颜色的花费

  问你分成K块的最小花费

题解:

  设定dp[i][j][k]表示第i棵树 时 填的j颜色 分成k块 的 最小花费

  n^4去转移不会超时

  可是 我们可以 把最后两维放到 线段树优化

  这样就是n^3 log

#include<bits/stdc++.h>
using namespace std; #pragma comment(linker, "/STACK:102400000,102400000")
#define ls i<<1
#define rs ls | 1
#define mid ((ll+rr)>>1)
#define pii pair<int,int>
#define MP make_pair typedef long long LL;
const long long INF = 1e18;
const double Pi = acos(-1.0);
const int N = 1e2+, M = 1e6+, mod = 1e6+; const LL inf = 1e15; int n,k,m; LL a[N]; LL dp[N][N][N];
LL mi[N<<][N<<];
LL v[N][N]; void build(int K,int i,int ll,int rr) {
mi[K][i] = inf;
if(ll == rr) {
return ;
}
build(K,ls,ll,mid);
build(K,rs,mid+,rr);
} void update(int K,int i,int ll,int rr,int x,LL c) {
if(ll == rr && x == ll) {
mi[K][i] = c;return ;
}
if(x <= mid) update(K,ls,ll,mid,x,c);
else if(x > mid) update(K,rs,mid+,rr,x,c);
mi[K][i] = min(mi[K][ls],mi[K][rs]);
} LL ask(int K,int i,int ll,int rr,int l,int r,int op,int x) {
if(l > r) return inf;
if(ll == l && r == rr) {
return mi[K][i];
}
if(r <= mid) return ask(K,ls,ll,mid,l,r,op,x);
else if(l > mid) return ask(K,rs,mid+,rr,l,r,op,x);
else return min(ask(K,ls,ll,mid,l,mid,op,x), ask(K,rs,mid+,rr,mid+,r,op,x));
} int main ( ) {
scanf("%d%d%d",&n,&m,&k);
for(int i = ; i <= n; ++i) scanf("%I64d",&a[i]);
for(int i = ; i <= n; ++i) {
for(int j = ; j <= m; ++j) scanf("%I64d",&v[i][j]);
} for(int i = ; i <= ; ++i) {
for(int j = ; j <= ; ++j) {
for(int K = ; K <= ; ++K) dp[i][j][K] = inf;
}
} for(int i = ; i <= k; i++) {
build(i,,,m);
} if(a[] == ) {
for(int i = ; i <= m; i++) dp[][i][] = v[][i];
} else dp[][a[]][] = ; for(int i = ; i <= m; ++i) {
update(,,,m,i,dp[][i][]);
} for(int i = ; i <= n; ++i) {
if(a[i] == ) {
for(int j = ; j <= m; ++j) {
for(int K = ; K <= k; ++K){
if(K != ) {
if(j!=&&j!=m)dp[i][j][K] = min(min(ask(K-,,,m,,j-,i,j),ask(K-,,,m,j+,m,i,j))+v[i][j],dp[i][j][K]);
else if(j == ) dp[i][j][K] = min(ask(K-,,,m,,m,i,j)+v[i][j],dp[i][j][K]);
else dp[i][j][K] = min(ask(K-,,,m,,m-,i,j)+v[i][j],dp[i][j][K]);
}
dp[i][j][K] = min( dp[i][j][K],dp[i-][j][K] + v[i][j]);
}
}
}
else {
for(int K = ; K <= k; ++K)
{
if(K != ) {
if(a[i] == ) dp[i][a[i]][K] = min(ask(K-,,,m,,m,i,),dp[i][a[i]][K]);
else if(a[i] == m) dp[i][a[i]][K] = min(ask(K-,,,m,,m-,i,),dp[i][a[i]][K]);
else dp[i][a[i]][K] = min(min(ask(K-,,,m,,a[i]-,i,),ask(K-,,,m,a[i]+,m,i,)),dp[i][a[i]][K]);
}
dp[i][a[i]][K] = min(dp[i-][a[i]][K],dp[i][a[i]][K]);
}
} for(int K = ; K <= k; ++K) for(int j = ; j <= m; j++) update(K,,,m,j,dp[i][j][K]);
} LL ans = ask(k,,,m,,m,n+,);
if( ans >= inf) puts("-1");
else
printf("%I64d\n",ans);
}

n^3 log

  n^4:

#include<bits/stdc++.h>
using namespace std;
typedef long long int uli;
const uli oo=1e15;
uli f[][][];
uli p[][];
int color[];
int main(){
int n,m,k;
scanf("%d %d %d",&n,&m,&k);
for(int i=;i<n;i++)scanf("%d",color+i);
for(int i=;i<n;i++)
for(int j=;j<=m;j++)
scanf("%lld",&p[i][j]);
for(int i=;i<n;i++)if(color[i]!=)p[i][color[i]]=;
int rw=;
for(int c=;c<;c++){
for(int q=;q<;q++)f[rw][c][q]=oo;
f[rw][c][]=;
}
for(int i=;i<n;i++){
rw^=;
int from=,to=m;
if(color[i]!=)from=to=color[i];
for(int c=;c<=m;c++){
for(int q=;q<=k;q++){
f[rw][c][q]=oo;
for(int x=from;x<=to;x++){
int nq=q-(x!=c);
if(nq>=)f[rw][c][q]=min(f[rw][c][q],f[rw^][x][nq]+p[i][x]);
}
}
}
}
uli ans=f[rw][][k];
if(ans>=oo)ans=-;
printf("%lld\n",ans);
return ;
}

  

Codeforces Round #369 (Div. 2) C. Coloring Trees DP的更多相关文章

  1. Codeforces Round #369 (Div. 2) C. Coloring Trees(dp)

    Coloring Trees Problem Description: ZS the Coder and Chris the Baboon has arrived at Udayland! They ...

  2. Codeforces Round #369 (Div. 2) C. Coloring Trees 动态规划

    C. Coloring Trees 题目连接: http://www.codeforces.com/contest/711/problem/C Description ZS the Coder and ...

  3. Codeforces Round #369 (Div. 2) C. Coloring Trees (DP)

    C. Coloring Trees time limit per test 2 seconds memory limit per test 256 megabytes input standard i ...

  4. Codeforces Round #369 (Div. 2)---C - Coloring Trees (很妙的DP题)

    题目链接 http://codeforces.com/contest/711/problem/C Description ZS the Coder and Chris the Baboon has a ...

  5. Codeforces Round #369 (Div. 2) C. Coloring Trees(简单dp)

    题目:https://codeforces.com/problemset/problem/711/C 题意:给你n,m,k,代表n个数的序列,有m种颜色可以涂,0代表未涂颜色,其他代表已经涂好了,连着 ...

  6. Codeforces Round #369 (Div. 2)-C Coloring Trees

    题目大意:有n个点,由m种颜料,有些点没有涂色,有些点已经涂色了,告诉你每个点涂m种颜色的价格分别是多少, 让你求将这n个点分成k段最少需要多少钱. 思路:动态规划,我们另dp[ i ][ j ][ ...

  7. Codeforces Round #369 (Div. 2) C 基本dp+暴力

    C. Coloring Trees time limit per test 2 seconds memory limit per test 256 megabytes input standard i ...

  8. Codeforces Round #174 (Div. 1) B. Cow Program(dp + 记忆化)

    题目链接:http://codeforces.com/contest/283/problem/B 思路: dp[now][flag]表示现在在位置now,flag表示是接下来要做的步骤,然后根据题意记 ...

  9. Codeforces #369 (Div. 2) C. Coloring Trees (3维dp

    http://codeforces.com/group/1EzrFFyOc0/contest/711/problem/C https://blog.csdn.net/qq_36368339/artic ...

随机推荐

  1. jQuery DataTables && Django serializer

    jQuery DataTables https://www.datatables.net 本文参考的官方示例 http://datatables.net/release-datatables/exam ...

  2. ios Unit test 入门书籍推荐

    请参考 ios 7 by tutorials 中的 chapter 11 :Unit Testing in xcode 5

  3. Zlib 在windows上的编译

    1.下载http://www.zlib.net 下载,最新版本1.2.8 2.解压后,实际已提供了在vc下编译的工程,目录为:zlib-1.2.8\contrib\vstudio. 其中的zlibst ...

  4. FFmpeg-20160415-snapshot-bin

    ESC 退出 0 进度条开关 1 屏幕原始大小 2 屏幕1/2大小 3 屏幕1/3大小 4 屏幕1/4大小 S 下一帧 [ -2秒 ] +2秒 ; -1秒 ' +1秒 下一个帧 -> -5秒 F ...

  5. codevs 3290 华容道(SPFA+bfs)

    codevs 3290华容道 3290 华容道 2013年NOIP全国联赛提高组 时间限制: 1 s  空间限制: 128000 KB 题目描述 Description 小 B 最近迷上了华容道,可是 ...

  6. 【编程题目】输入一个单向链表,输出该链表中倒数第 k 个结点

    第 13 题(链表):题目:输入一个单向链表,输出该链表中倒数第 k 个结点.链表的倒数第 0 个结点为链表的尾指针.链表结点定义如下: struct ListNode {int m_nKey;Lis ...

  7. struts 拦截器 Interceptor

         拦截器是AOP中的概念,它本身是一段代码,可以通过定义“织入点”,来指定拦截器的代码在“织入点”的前后执行,从而起到拦截的作用.正如上面 Struts2的Reference中讲述的,Stru ...

  8. python getopt.getopt 不能精确匹配的问题

    代码:opts,argv = getopt.getopt(sys.argv[1:],('u:'),['ad','join','passwd=','domain=','dip=','test','ip= ...

  9. css3属性flex弹性布局设置三列(四列)分布样式

    参考:阮一峰的网络日志 <!doctype html> <html lang="en"> <head> <meta charset=&qu ...

  10. eclipse clear swtich workspace

    edit : --> D:\tools\eclipse\configuration\.settings\org.eclipse.ui.ide.prefs