UVa 437 The Tower of Babylon(经典动态规划)
Description
Perhaps you have heard of the legend of the Tower of Babylon. Nowadays many details of this tale have been forgotten. So now, in line with the educational nature of this contest, we will tell you the whole story: The babylonians had n types of blocks, and an unlimited supply of blocks of each type. Each type-i block was a rectangular solid with linear dimensions (xi , yi , zi). A block could be reoriented so that any two of its three dimensions determined the dimensions of the base and the other dimension was the height. They wanted to construct the tallest tower possible by stacking blocks. The problem was that, in building a tower, one block could only be placed on top of another block as long as the two base dimensions of the upper block were both strictly smaller than the corresponding base dimensions of the lower block. This meant, for example, that blocks oriented to have equal-sized bases couldn’t be stacked. Your job is to write a program that determines the height of the tallest tower the babylonians can build with a given set of blocks.
Input
The input file will contain one or more test cases. The first line of each test case contains an integer n, representing the number of different blocks in the following data set. The maximum value for n is 30. Each of the next n lines contains three integers representing the values xi , yi and zi . Input is terminated by a value of zero (0) for n.
Output
For each test case, print one line containing the case number (they are numbered sequentially starting from 1) and the height of the tallest possible tower in the format ‘Case case: maximum height = height’
Sample Input
1
10 20 30
2
6 8 10
5 5 5
7
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 6 6
7 7 7
5
31 41 59
26 53 58
97 93 23
84 62 64
33 83 27
0
Sample Output
Case 1: maximum height = 40
Case 2: maximum height = 21
Case 3: maximum height = 28
Case 4: maximum height = 342
思路
题意:
有n(n≤30)中立方体,每种都有无穷多个。要求选一些立方体摞成一根尽量高的柱子(可以自行选择哪一条边作为高),使得每个立方体的底面长宽分别严格小于它下方立方体的底面长宽。
思路:
矩形嵌套的变形题,将题目信息转化为矩形嵌套来做。
#include<bits/stdc++.h>
using namespace std;
const int maxn = 35;
struct Node{
int len,wid,hei;
}node[maxn*3];
bool cmp(struct Node x,struct Node y)
{
if (x.len == y.len) return x.wid < y.wid;
else return x.len < y.len;
}
int main()
{
int N,Case = 0;
while (~scanf("%d",&N) && N)
{
int x,y,z,p = 0,res = 0;
int dp[maxn*3];
for (int i = 0;i < N;i++)
{
scanf("%d%d%d",&x,&y,&z);
node[p].len = x>y?x:y;node[p].wid = x<y?x:y;node[p++].hei = z;
node[p].len = x>z?x:z;node[p].wid = x<z?x:z;node[p++].hei = y;
node[p].len = y>z?y:z;node[p].wid = y<z?y:z;node[p++].hei = x;
}
sort(node,node+p,cmp);
for (int i = 0;i < p;i++)
{
dp[i] = node[i].hei;
for (int j = 0;j < i;j++)
{
if (node[i].len > node[j].len && node[i].wid > node[j].wid && dp[i] < dp[j] + node[i].hei)
{
dp[i] = dp[j] + node[i].hei;
}
}
res = max(res,dp[i]);
}
printf("Case %d: maximum height = %d\n",++Case,res);
}
return 0;
}
// UVa437 The Tower of Babylon
// Rujia Liu
// 算法:DAG上的最长路,状态为(idx, k),即当前顶面为立方体idx,其中第k条边(排序后)为高
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define REP(i,n) for(int i = 0; i < (n); i++)
const int maxn = 30 + 5;
int n, blocks[maxn][3], d[maxn][3];
void get_dimensions(int* v, int b, int dim)
{
int idx = 0;
REP(i,3) if(i != dim) v[idx++] = blocks[b][i];
}
int dp(int i, int j)
{
int& ans = d[i][j];
if(ans > 0) return ans;
ans = 0;
int v[2], v2[2];
get_dimensions(v, i, j);
REP(a,n) REP(b,3)
{
get_dimensions(v2, a, b);
if(v2[0] < v[0] && v2[1] < v[1]) ans = max(ans, dp(a,b));
}
ans += blocks[i][j];
return ans;
}
int main()
{
int kase = 0;
while(scanf("%d", &n) == 1 && n)
{
REP(i,n)
{
REP(j,3) scanf("%d", &blocks[i][j]);
sort(blocks[i], blocks[i]+3);
}
memset(d, 0, sizeof(d));
int ans = 0;
REP(i,n) REP(j,3) ans = max(ans, dp(i,j));
printf("Case %d: maximum height = %d\n", ++kase, ans);
}
return 0;
}
UVa 437 The Tower of Babylon(经典动态规划)的更多相关文章
- UVa 437 The Tower of Babylon
Description Perhaps you have heard of the legend of the Tower of Babylon. Nowadays many details of ...
- UVa 437 The Tower of Babylon(DP 最长条件子序列)
题意 给你n种长方体 每种都有无穷个 当一个长方体的长和宽都小于还有一个时 这个长方体能够放在还有一个上面 要求输出这样累积起来的最大高度 由于每一个长方体都有3种放法 比較不好控制 ...
- UVA 437 The Tower of Babylon(DAG上的动态规划)
题目大意是根据所给的有无限多个的n种立方体,求其所堆砌成的塔最大高度. 方法1,建图求解,可以把问题转化成求DAG上的最长路问题 #include <cstdio> #include &l ...
- UVA 437 "The Tower of Babylon" (DAG上的动态规划)
传送门 题意 有 n 种立方体,每种都有无穷多个. 要求选一些立方体摞成一根尽量高的柱子(在摞的时候可以自行选择哪一条边作为高): 立方体 a 可以放在立方体 b 上方的前提条件是立方体 a 的底面长 ...
- DP(DAG) UVA 437 The Tower of Babylon
题目传送门 题意:给出一些砖头的长宽高,砖头能叠在另一块上要求它的长宽都小于下面的转头的长宽,问叠起来最高能有多高 分析:设一个砖头的长宽高为x, y, z,那么想当于多了x, z, y 和y, x, ...
- UVA - 437 The Tower of Babylon(dp-最长递增子序列)
每一个长方形都有六种放置形态,其实可以是三种,但是判断有点麻烦直接用六种了,然后按照底面积给这些形态排序,排序后就完全变成了LIS的问题.代码如下: #include<iostream> ...
- UVA 437 The Tower of Babylon巴比伦塔
题意:有n(n≤30)种立方体,每种有无穷多个.要求选一些立方体摞成一根尽量高的柱子(可以自行选择哪一条边作为高),使得每个立方体的底面长宽分别严格小于它下方立方体的底面长宽. 评测地址:http:/ ...
- UVA437-The Tower of Babylon(动态规划基础)
Problem UVA437-The Tower of Babylon Accept: 3648 Submit: 12532Time Limit: 3000 mSec Problem Descrip ...
- UVA 427 The Tower of Babylon 巴比伦塔(dp)
据说是DAG的dp,可用spfa来做,松弛操作改成变长.注意状态的表示. 影响决策的只有顶部的尺寸,因为尺寸可能很大,所以用立方体的编号和高的编号来表示,然后向尺寸更小的转移就行了. #include ...
随机推荐
- lecture1-NN的简介
这是DL的发明人Hinton在多伦多大学的2013年冬季教授de课程,并将视频分享到coursera网站上.其中不但有视频,也有课件,但是Hinton主页上还有他上课的课后问题,Hinton告诉学生这 ...
- Clock Skew , Clock Uncertainty和 Period
本文将介绍FPGA中和时钟有关的相关概念,阅读本文前需要对时序收敛的基本概念和建立.保持关系有一定了解,这些内容可以在时序收敛:基本概念,建立时间和保持时间(setup time 和 hold tim ...
- 【python游戏编程之旅】第七篇---pygame中的冲突检测技术
本系列博客介绍以python+pygame库进行小游戏的开发.有写的不对之处还望各位海涵. 上一个博客我们一起学习了pygame中的Sprite模块和如何加载动画:http://www.cnblogs ...
- Log4net使用(三)
第一步 public class logger { private static ILog Info; private static ILog Error; private static ILog W ...
- WebHeaderCollection 类
https://msdn.microsoft.com/zh-cn/library/system.net.webheadercollection(v=VS.95).aspx /// <summar ...
- CSS3 transform原点设置
以左上角为原点 -moz-transform-origin: 0 0; -webkit-transform-origin:0 0; -o-transform-origin:0 0; 以右上角给原点 - ...
- webpack入坑之旅(一)不是开始的开始
最近学习框架,选择了vue,然后接触到了vue中的单文件组件,官方推荐使用 Webpack + vue-loader构建这些单文件 Vue 组件,于是就开始了webpack的入坑之旅.因为原来没有用过 ...
- 51nod 1101换零钱(背包)
N元钱换为零钱,有多少不同的换法?币值包括1 2 5分,1 2 5角,1 2 5 10 20 50 100元. 例如:5分钱换为零钱,有以下4种换法: 1.5个1分 2.1个2分3个1分 3.2个 ...
- C#-WinForm-客户端程序-Form基本属性
WinForm - 客服端程序(C/S) WindowsForm 的简称 客户端应用程序:是需要安装在用户电脑上才可以使用的程序,代码部分在用户电脑上执行 特点:不需要联网也可以打开使用部分功能,但现 ...
- MyEclipse项目上有个感叹号
如图: 然后把有叉的选项移除就可以了