传送门

Description

Perhaps you have heard of the legend of the Tower of Babylon. Nowadays many details of this tale have been forgotten. So now, in line with the educational nature of this contest, we will tell you the whole story: The babylonians had n types of blocks, and an unlimited supply of blocks of each type. Each type-i block was a rectangular solid with linear dimensions (xi , yi , zi). A block could be reoriented so that any two of its three dimensions determined the dimensions of the base and the other dimension was the height. They wanted to construct the tallest tower possible by stacking blocks. The problem was that, in building a tower, one block could only be placed on top of another block as long as the two base dimensions of the upper block were both strictly smaller than the corresponding base dimensions of the lower block. This meant, for example, that blocks oriented to have equal-sized bases couldn’t be stacked. Your job is to write a program that determines the height of the tallest tower the babylonians can build with a given set of blocks.

Input

The input file will contain one or more test cases. The first line of each test case contains an integer n, representing the number of different blocks in the following data set. The maximum value for n is 30. Each of the next n lines contains three integers representing the values xi , yi and zi . Input is terminated by a value of zero (0) for n.

Output

For each test case, print one line containing the case number (they are numbered sequentially starting from 1) and the height of the tallest possible tower in the format ‘Case case: maximum height = height’

Sample Input

1
10 20 30
2
6 8 10
5 5 5
7
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 6 6
7 7 7
5
31 41 59
26 53 58
97 93 23
84 62 64
33 83 27
0

Sample Output

Case 1: maximum height = 40
Case 2: maximum height = 21
Case 3: maximum height = 28
Case 4: maximum height = 342

思路

  题意:

  有n(n≤30)中立方体,每种都有无穷多个。要求选一些立方体摞成一根尽量高的柱子(可以自行选择哪一条边作为高),使得每个立方体的底面长宽分别严格小于它下方立方体的底面长宽。

  思路:

  矩形嵌套的变形题,将题目信息转化为矩形嵌套来做。

#include<bits/stdc++.h>
using namespace std;
const int maxn = 35;
struct Node{
	int len,wid,hei;
}node[maxn*3];

bool cmp(struct Node x,struct Node y)
{
	if (x.len == y.len)	return x.wid < y.wid;
	else	return x.len < y.len;
}

int main()
{
	int N,Case = 0;
	while (~scanf("%d",&N) && N)
	{
		int x,y,z,p = 0,res = 0;
		int dp[maxn*3];
		for (int i = 0;i < N;i++)
		{
			scanf("%d%d%d",&x,&y,&z);
			node[p].len = x>y?x:y;node[p].wid = x<y?x:y;node[p++].hei = z;
			node[p].len = x>z?x:z;node[p].wid = x<z?x:z;node[p++].hei = y;
			node[p].len = y>z?y:z;node[p].wid = y<z?y:z;node[p++].hei = x;
		}
		sort(node,node+p,cmp);
		for (int i = 0;i < p;i++)
		{
			dp[i] = node[i].hei;
			for (int j = 0;j < i;j++)
			{
				if (node[i].len > node[j].len && node[i].wid > node[j].wid && dp[i] < dp[j] + node[i].hei)
				{
					dp[i] = dp[j] + node[i].hei;
				}
			}
			res = max(res,dp[i]);
		}
		printf("Case %d: maximum height = %d\n",++Case,res);
	}
	return 0;
}

  

// UVa437 The Tower of Babylon
// Rujia Liu
// 算法:DAG上的最长路,状态为(idx, k),即当前顶面为立方体idx,其中第k条边(排序后)为高
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;

#define REP(i,n) for(int i = 0; i < (n); i++)

const int maxn = 30 + 5;
int n, blocks[maxn][3], d[maxn][3];

void get_dimensions(int* v, int b, int dim)
{
    int idx = 0;
    REP(i,3) if(i != dim) v[idx++] = blocks[b][i];
}

int dp(int i, int j)
{
    int& ans = d[i][j];
    if(ans > 0) return ans;
    ans = 0;
    int v[2], v2[2];
    get_dimensions(v, i, j);
    REP(a,n) REP(b,3)
    {
        get_dimensions(v2, a, b);
        if(v2[0] < v[0] && v2[1] < v[1]) ans = max(ans, dp(a,b));
    }
    ans += blocks[i][j];
    return ans;
}

int main()
{
    int kase = 0;
    while(scanf("%d", &n) == 1 && n)
    {
        REP(i,n)
        {
            REP(j,3) scanf("%d", &blocks[i][j]);
            sort(blocks[i], blocks[i]+3);
        }
        memset(d, 0, sizeof(d));
        int ans = 0;
        REP(i,n) REP(j,3) ans = max(ans, dp(i,j));
        printf("Case %d: maximum height = %d\n", ++kase, ans);
    }
    return 0;
}

  

UVa 437 The Tower of Babylon(经典动态规划)的更多相关文章

  1. UVa 437 The Tower of Babylon

    Description   Perhaps you have heard of the legend of the Tower of Babylon. Nowadays many details of ...

  2. UVa 437 The Tower of Babylon(DP 最长条件子序列)

     题意  给你n种长方体  每种都有无穷个  当一个长方体的长和宽都小于还有一个时  这个长方体能够放在还有一个上面  要求输出这样累积起来的最大高度 由于每一个长方体都有3种放法  比較不好控制 ...

  3. UVA 437 The Tower of Babylon(DAG上的动态规划)

    题目大意是根据所给的有无限多个的n种立方体,求其所堆砌成的塔最大高度. 方法1,建图求解,可以把问题转化成求DAG上的最长路问题 #include <cstdio> #include &l ...

  4. UVA 437 "The Tower of Babylon" (DAG上的动态规划)

    传送门 题意 有 n 种立方体,每种都有无穷多个. 要求选一些立方体摞成一根尽量高的柱子(在摞的时候可以自行选择哪一条边作为高): 立方体 a 可以放在立方体 b 上方的前提条件是立方体 a 的底面长 ...

  5. DP(DAG) UVA 437 The Tower of Babylon

    题目传送门 题意:给出一些砖头的长宽高,砖头能叠在另一块上要求它的长宽都小于下面的转头的长宽,问叠起来最高能有多高 分析:设一个砖头的长宽高为x, y, z,那么想当于多了x, z, y 和y, x, ...

  6. UVA - 437 The Tower of Babylon(dp-最长递增子序列)

    每一个长方形都有六种放置形态,其实可以是三种,但是判断有点麻烦直接用六种了,然后按照底面积给这些形态排序,排序后就完全变成了LIS的问题.代码如下: #include<iostream> ...

  7. UVA 437 The Tower of Babylon巴比伦塔

    题意:有n(n≤30)种立方体,每种有无穷多个.要求选一些立方体摞成一根尽量高的柱子(可以自行选择哪一条边作为高),使得每个立方体的底面长宽分别严格小于它下方立方体的底面长宽. 评测地址:http:/ ...

  8. UVA437-The Tower of Babylon(动态规划基础)

    Problem UVA437-The Tower of Babylon Accept: 3648  Submit: 12532Time Limit: 3000 mSec Problem Descrip ...

  9. UVA 427 The Tower of Babylon 巴比伦塔(dp)

    据说是DAG的dp,可用spfa来做,松弛操作改成变长.注意状态的表示. 影响决策的只有顶部的尺寸,因为尺寸可能很大,所以用立方体的编号和高的编号来表示,然后向尺寸更小的转移就行了. #include ...

随机推荐

  1. Openwrt Image Builder/SDK 初探

    image builder和SDK既可以从官网上下载,又可以自己进行编译(make menuconfig).官网上下载的是预先帮你编译好的,这样可以大量节省自己编译源码花的时间,这两个东西相当于半成品 ...

  2. 如何用 Nodejs 分析一个简单页面

    本文目的 在浏览器地址栏中输入 localhost:3000,在页面显示 博客园首页 的 20 篇文章标题. 过程分析 首先需要端口的监听,这就需要引入 Node 中最重要的模块之一 express. ...

  3. 从idea上通过路径去导入项目

    这里我用git来演示导入. 首先确定你要导入项目的路径.(我这里用码云路径图片做演示) 1.选择 2.填写

  4. DirectX11 SDK 例程报错解决方法

    下载好DirectX11例程后,VS2015运行不起来,好几个报错 在这里记录一下,虽然挺简单的,但是我想对于像我这样的新手小伙伴们来说还是挺有用的 第一个错误: FXC : error X3501: ...

  5. Linux进程间通信之共享内存

    一,共享内存  内核管理一片物理内存,允许不同的进程同时映射,多个进程可以映射同一块内存,被多个进程同时映射的物理内存,即共享内存.  映射物理内存叫挂接,用完以后解除映射叫脱接. 1,共享内存的特点 ...

  6. 文本 To 音频

    文本  To  音频 TextToSpeech介绍 TextToSpeech,简称 TTS,是Android 1.6版本中比较重要的新功能.将所指定的文本转成不同语言音频输出.它可以方便的嵌入到游戏或 ...

  7. JavaScript学习笔记-简单的倒计时跳转页面

    <!DOCTYPE html> <html lang="en" xmlns="http://www.w3.org/1999/xhtml"> ...

  8. Php 安装 curl

    一.用好tab键.输入一部分,就按两次tab键,看看到底应该安什么

  9. Python基础-字符串格式化_百分号方式_format方式

    Python的字符串格式化有两种方式: 百分号方式.format方式 百分号的方式相对来说比较老,而format方式则是比较先进的方式,企图替换古老的方式,目前两者并存.[PEP-3101] This ...

  10. RabbitMQ 发布/订阅

    我们会做一些改变,就是把一个消息发给多个消费者,这种模式称之为发布/订阅(类似观察者模式). 为了验证这种模式,我们准备构建一个简单的日志系统.这个系统包含两类程序,一类程序发动日志,另一类程序接收和 ...