UVa 437 The Tower of Babylon(经典动态规划)
Description
Perhaps you have heard of the legend of the Tower of Babylon. Nowadays many details of this tale have been forgotten. So now, in line with the educational nature of this contest, we will tell you the whole story: The babylonians had n types of blocks, and an unlimited supply of blocks of each type. Each type-i block was a rectangular solid with linear dimensions (xi , yi , zi). A block could be reoriented so that any two of its three dimensions determined the dimensions of the base and the other dimension was the height. They wanted to construct the tallest tower possible by stacking blocks. The problem was that, in building a tower, one block could only be placed on top of another block as long as the two base dimensions of the upper block were both strictly smaller than the corresponding base dimensions of the lower block. This meant, for example, that blocks oriented to have equal-sized bases couldn’t be stacked. Your job is to write a program that determines the height of the tallest tower the babylonians can build with a given set of blocks.
Input
The input file will contain one or more test cases. The first line of each test case contains an integer n, representing the number of different blocks in the following data set. The maximum value for n is 30. Each of the next n lines contains three integers representing the values xi , yi and zi . Input is terminated by a value of zero (0) for n.
Output
For each test case, print one line containing the case number (they are numbered sequentially starting from 1) and the height of the tallest possible tower in the format ‘Case case: maximum height = height’
Sample Input
1
10 20 30
2
6 8 10
5 5 5
7
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 6 6
7 7 7
5
31 41 59
26 53 58
97 93 23
84 62 64
33 83 27
0
Sample Output
Case 1: maximum height = 40
Case 2: maximum height = 21
Case 3: maximum height = 28
Case 4: maximum height = 342
思路
题意:
有n(n≤30)中立方体,每种都有无穷多个。要求选一些立方体摞成一根尽量高的柱子(可以自行选择哪一条边作为高),使得每个立方体的底面长宽分别严格小于它下方立方体的底面长宽。
思路:
矩形嵌套的变形题,将题目信息转化为矩形嵌套来做。
#include<bits/stdc++.h>
using namespace std;
const int maxn = 35;
struct Node{
int len,wid,hei;
}node[maxn*3];
bool cmp(struct Node x,struct Node y)
{
if (x.len == y.len) return x.wid < y.wid;
else return x.len < y.len;
}
int main()
{
int N,Case = 0;
while (~scanf("%d",&N) && N)
{
int x,y,z,p = 0,res = 0;
int dp[maxn*3];
for (int i = 0;i < N;i++)
{
scanf("%d%d%d",&x,&y,&z);
node[p].len = x>y?x:y;node[p].wid = x<y?x:y;node[p++].hei = z;
node[p].len = x>z?x:z;node[p].wid = x<z?x:z;node[p++].hei = y;
node[p].len = y>z?y:z;node[p].wid = y<z?y:z;node[p++].hei = x;
}
sort(node,node+p,cmp);
for (int i = 0;i < p;i++)
{
dp[i] = node[i].hei;
for (int j = 0;j < i;j++)
{
if (node[i].len > node[j].len && node[i].wid > node[j].wid && dp[i] < dp[j] + node[i].hei)
{
dp[i] = dp[j] + node[i].hei;
}
}
res = max(res,dp[i]);
}
printf("Case %d: maximum height = %d\n",++Case,res);
}
return 0;
}
// UVa437 The Tower of Babylon
// Rujia Liu
// 算法:DAG上的最长路,状态为(idx, k),即当前顶面为立方体idx,其中第k条边(排序后)为高
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define REP(i,n) for(int i = 0; i < (n); i++)
const int maxn = 30 + 5;
int n, blocks[maxn][3], d[maxn][3];
void get_dimensions(int* v, int b, int dim)
{
int idx = 0;
REP(i,3) if(i != dim) v[idx++] = blocks[b][i];
}
int dp(int i, int j)
{
int& ans = d[i][j];
if(ans > 0) return ans;
ans = 0;
int v[2], v2[2];
get_dimensions(v, i, j);
REP(a,n) REP(b,3)
{
get_dimensions(v2, a, b);
if(v2[0] < v[0] && v2[1] < v[1]) ans = max(ans, dp(a,b));
}
ans += blocks[i][j];
return ans;
}
int main()
{
int kase = 0;
while(scanf("%d", &n) == 1 && n)
{
REP(i,n)
{
REP(j,3) scanf("%d", &blocks[i][j]);
sort(blocks[i], blocks[i]+3);
}
memset(d, 0, sizeof(d));
int ans = 0;
REP(i,n) REP(j,3) ans = max(ans, dp(i,j));
printf("Case %d: maximum height = %d\n", ++kase, ans);
}
return 0;
}
UVa 437 The Tower of Babylon(经典动态规划)的更多相关文章
- UVa 437 The Tower of Babylon
Description Perhaps you have heard of the legend of the Tower of Babylon. Nowadays many details of ...
- UVa 437 The Tower of Babylon(DP 最长条件子序列)
题意 给你n种长方体 每种都有无穷个 当一个长方体的长和宽都小于还有一个时 这个长方体能够放在还有一个上面 要求输出这样累积起来的最大高度 由于每一个长方体都有3种放法 比較不好控制 ...
- UVA 437 The Tower of Babylon(DAG上的动态规划)
题目大意是根据所给的有无限多个的n种立方体,求其所堆砌成的塔最大高度. 方法1,建图求解,可以把问题转化成求DAG上的最长路问题 #include <cstdio> #include &l ...
- UVA 437 "The Tower of Babylon" (DAG上的动态规划)
传送门 题意 有 n 种立方体,每种都有无穷多个. 要求选一些立方体摞成一根尽量高的柱子(在摞的时候可以自行选择哪一条边作为高): 立方体 a 可以放在立方体 b 上方的前提条件是立方体 a 的底面长 ...
- DP(DAG) UVA 437 The Tower of Babylon
题目传送门 题意:给出一些砖头的长宽高,砖头能叠在另一块上要求它的长宽都小于下面的转头的长宽,问叠起来最高能有多高 分析:设一个砖头的长宽高为x, y, z,那么想当于多了x, z, y 和y, x, ...
- UVA - 437 The Tower of Babylon(dp-最长递增子序列)
每一个长方形都有六种放置形态,其实可以是三种,但是判断有点麻烦直接用六种了,然后按照底面积给这些形态排序,排序后就完全变成了LIS的问题.代码如下: #include<iostream> ...
- UVA 437 The Tower of Babylon巴比伦塔
题意:有n(n≤30)种立方体,每种有无穷多个.要求选一些立方体摞成一根尽量高的柱子(可以自行选择哪一条边作为高),使得每个立方体的底面长宽分别严格小于它下方立方体的底面长宽. 评测地址:http:/ ...
- UVA437-The Tower of Babylon(动态规划基础)
Problem UVA437-The Tower of Babylon Accept: 3648 Submit: 12532Time Limit: 3000 mSec Problem Descrip ...
- UVA 427 The Tower of Babylon 巴比伦塔(dp)
据说是DAG的dp,可用spfa来做,松弛操作改成变长.注意状态的表示. 影响决策的只有顶部的尺寸,因为尺寸可能很大,所以用立方体的编号和高的编号来表示,然后向尺寸更小的转移就行了. #include ...
随机推荐
- 工作随笔——Intellij_idea-14官方快捷键中文版
听说Intellij Idea好几年了.因为快捷键的原因,所以一直没有放弃eclipse.上周末抽了点时间,用google翻译+自己实践翻译了一下官方的快捷键. 基本做完的时候在百度文库上突然搜索到一 ...
- 微软分布式云计算框架Orleans(2):容灾与集群(1)
在上一篇:微软分布式云计算框架Orleans(1):Hello World,我们大概了解了Orleans如何运用,当然上一篇的例子可以说是简单且无效的,因为用了Orleans不可能只写一个Hello ...
- unittest使用过程中sys.exit(not self.result.wasSuccessful())
起因: 在运行下面的unittest过程中出现了个Traceback: 被测试脚本: # splitter.py def split(line, types=None, delimiter=None) ...
- [bzoj2286][Sdoi2011]消耗战(虚树上的DP)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=2286 分析:对于普通的树形dp:f[x]=min(∑f[son],m[x]),其中f[ ...
- AngularJS 日期转换字符串
日期转换成字符串的办法有很多种,其中最简单的方法是 使用AngularJS的filter来实现. $filter('date')(date, 'yyyyMM'): $filter('date')(da ...
- 线性表的链式存储C语言版
#include <stdio.h> #include <malloc.h> #define N 10 typedef struct Node { int data; stru ...
- [转]Cookie/Session机制详解
原文地址:http://blog.csdn.net/fangaoxin/article/details/6952954 会话(Session)跟踪是Web程序中常用的技术,用来跟踪用户的整个会话.常用 ...
- 【BZOJ 2301】【HAOI 2011】Problem b
今天才知道莫比乌斯反演还可以这样:$$F(n)=\sum_{n|d}f(d) \Rightarrow f(n)=\sum_{n|d}\mu(\frac{d}{n})F(d)$$我好弱,,,对于$$F( ...
- 【BZOJ 2809】【APIO 2012】dispatching
昨天晚上zyf神犇问我的题,虽然我太弱参加不了APIO但也做一做吧. 用小数据拍了无数次总是查不出错来,交上去就WA,后来用国内数据测发现是主席树上区间相减的值没有用long long存,小数据真是没 ...
- 强连通 HDU 1827
n个点m条边 n个权lcy 要叫这个人的花费 m条边 缩点后 新的图中 入度为0的点要通知 通知强连通分量中权值最小的 #include<stdio.h> #include<alg ...