UVa 437 The Tower of Babylon(经典动态规划)
Description
Perhaps you have heard of the legend of the Tower of Babylon. Nowadays many details of this tale have been forgotten. So now, in line with the educational nature of this contest, we will tell you the whole story: The babylonians had n types of blocks, and an unlimited supply of blocks of each type. Each type-i block was a rectangular solid with linear dimensions (xi , yi , zi). A block could be reoriented so that any two of its three dimensions determined the dimensions of the base and the other dimension was the height. They wanted to construct the tallest tower possible by stacking blocks. The problem was that, in building a tower, one block could only be placed on top of another block as long as the two base dimensions of the upper block were both strictly smaller than the corresponding base dimensions of the lower block. This meant, for example, that blocks oriented to have equal-sized bases couldn’t be stacked. Your job is to write a program that determines the height of the tallest tower the babylonians can build with a given set of blocks.
Input
The input file will contain one or more test cases. The first line of each test case contains an integer n, representing the number of different blocks in the following data set. The maximum value for n is 30. Each of the next n lines contains three integers representing the values xi , yi and zi . Input is terminated by a value of zero (0) for n.
Output
For each test case, print one line containing the case number (they are numbered sequentially starting from 1) and the height of the tallest possible tower in the format ‘Case case: maximum height = height’
Sample Input
1
10 20 30
2
6 8 10
5 5 5
7
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 6 6
7 7 7
5
31 41 59
26 53 58
97 93 23
84 62 64
33 83 27
0
Sample Output
Case 1: maximum height = 40
Case 2: maximum height = 21
Case 3: maximum height = 28
Case 4: maximum height = 342
思路
题意:
有n(n≤30)中立方体,每种都有无穷多个。要求选一些立方体摞成一根尽量高的柱子(可以自行选择哪一条边作为高),使得每个立方体的底面长宽分别严格小于它下方立方体的底面长宽。
思路:
矩形嵌套的变形题,将题目信息转化为矩形嵌套来做。
#include<bits/stdc++.h> using namespace std; const int maxn = 35; struct Node{ int len,wid,hei; }node[maxn*3]; bool cmp(struct Node x,struct Node y) { if (x.len == y.len) return x.wid < y.wid; else return x.len < y.len; } int main() { int N,Case = 0; while (~scanf("%d",&N) && N) { int x,y,z,p = 0,res = 0; int dp[maxn*3]; for (int i = 0;i < N;i++) { scanf("%d%d%d",&x,&y,&z); node[p].len = x>y?x:y;node[p].wid = x<y?x:y;node[p++].hei = z; node[p].len = x>z?x:z;node[p].wid = x<z?x:z;node[p++].hei = y; node[p].len = y>z?y:z;node[p].wid = y<z?y:z;node[p++].hei = x; } sort(node,node+p,cmp); for (int i = 0;i < p;i++) { dp[i] = node[i].hei; for (int j = 0;j < i;j++) { if (node[i].len > node[j].len && node[i].wid > node[j].wid && dp[i] < dp[j] + node[i].hei) { dp[i] = dp[j] + node[i].hei; } } res = max(res,dp[i]); } printf("Case %d: maximum height = %d\n",++Case,res); } return 0; }
// UVa437 The Tower of Babylon // Rujia Liu // 算法:DAG上的最长路,状态为(idx, k),即当前顶面为立方体idx,其中第k条边(排序后)为高 #include<cstdio> #include<cstring> #include<algorithm> using namespace std; #define REP(i,n) for(int i = 0; i < (n); i++) const int maxn = 30 + 5; int n, blocks[maxn][3], d[maxn][3]; void get_dimensions(int* v, int b, int dim) { int idx = 0; REP(i,3) if(i != dim) v[idx++] = blocks[b][i]; } int dp(int i, int j) { int& ans = d[i][j]; if(ans > 0) return ans; ans = 0; int v[2], v2[2]; get_dimensions(v, i, j); REP(a,n) REP(b,3) { get_dimensions(v2, a, b); if(v2[0] < v[0] && v2[1] < v[1]) ans = max(ans, dp(a,b)); } ans += blocks[i][j]; return ans; } int main() { int kase = 0; while(scanf("%d", &n) == 1 && n) { REP(i,n) { REP(j,3) scanf("%d", &blocks[i][j]); sort(blocks[i], blocks[i]+3); } memset(d, 0, sizeof(d)); int ans = 0; REP(i,n) REP(j,3) ans = max(ans, dp(i,j)); printf("Case %d: maximum height = %d\n", ++kase, ans); } return 0; }
UVa 437 The Tower of Babylon(经典动态规划)的更多相关文章
- UVa 437 The Tower of Babylon
Description Perhaps you have heard of the legend of the Tower of Babylon. Nowadays many details of ...
- UVa 437 The Tower of Babylon(DP 最长条件子序列)
题意 给你n种长方体 每种都有无穷个 当一个长方体的长和宽都小于还有一个时 这个长方体能够放在还有一个上面 要求输出这样累积起来的最大高度 由于每一个长方体都有3种放法 比較不好控制 ...
- UVA 437 The Tower of Babylon(DAG上的动态规划)
题目大意是根据所给的有无限多个的n种立方体,求其所堆砌成的塔最大高度. 方法1,建图求解,可以把问题转化成求DAG上的最长路问题 #include <cstdio> #include &l ...
- UVA 437 "The Tower of Babylon" (DAG上的动态规划)
传送门 题意 有 n 种立方体,每种都有无穷多个. 要求选一些立方体摞成一根尽量高的柱子(在摞的时候可以自行选择哪一条边作为高): 立方体 a 可以放在立方体 b 上方的前提条件是立方体 a 的底面长 ...
- DP(DAG) UVA 437 The Tower of Babylon
题目传送门 题意:给出一些砖头的长宽高,砖头能叠在另一块上要求它的长宽都小于下面的转头的长宽,问叠起来最高能有多高 分析:设一个砖头的长宽高为x, y, z,那么想当于多了x, z, y 和y, x, ...
- UVA - 437 The Tower of Babylon(dp-最长递增子序列)
每一个长方形都有六种放置形态,其实可以是三种,但是判断有点麻烦直接用六种了,然后按照底面积给这些形态排序,排序后就完全变成了LIS的问题.代码如下: #include<iostream> ...
- UVA 437 The Tower of Babylon巴比伦塔
题意:有n(n≤30)种立方体,每种有无穷多个.要求选一些立方体摞成一根尽量高的柱子(可以自行选择哪一条边作为高),使得每个立方体的底面长宽分别严格小于它下方立方体的底面长宽. 评测地址:http:/ ...
- UVA437-The Tower of Babylon(动态规划基础)
Problem UVA437-The Tower of Babylon Accept: 3648 Submit: 12532Time Limit: 3000 mSec Problem Descrip ...
- UVA 427 The Tower of Babylon 巴比伦塔(dp)
据说是DAG的dp,可用spfa来做,松弛操作改成变长.注意状态的表示. 影响决策的只有顶部的尺寸,因为尺寸可能很大,所以用立方体的编号和高的编号来表示,然后向尺寸更小的转移就行了. #include ...
随机推荐
- unix环境高级编程基础知识之第二篇(3)
看了unix环境高级编程第三章,把代码也都自己敲了一遍,另主要讲解了一些IO函数,read/write/fseek/fcntl:这里主要是c函数,比较容易,看多了就熟悉了.对fcntl函数讲解比较到位 ...
- 深入体验bash on windows,在windows上搭建原生的linux开发环境,酷!
今年微软Build 2016大会最让开发人员兴奋的消息之一,就是在Windows上可以原生运行Linux bash,对开发人员来说,这是一个喜闻乐见的消息. 1 安装 你必须安装开发者预览版本,才能使 ...
- Vuforia AR SDK入门
Vuforia是一个能让应用拥有视觉的软件平台.开发者借助它可以很轻松地为任何应用添加先进计算机视觉功能,允许你识别图片和物体,或者在真实世界中重建环境内容. 如果你现在正在制作一些可交互的市场活动项 ...
- 283 Move Zeroes
/** * 题意:将0挪到末尾,并且不改数组中原有元素的顺序 * 解析:找到0元素,然后寻找其后面非0的元素,进行交换位置 * @param {number[]} nums * @return {vo ...
- O2O营销模式(Online To Offline)
什么是O2O营销模式 O2O营销模式又称离线商务模式,是指线上营销线上购买带动线下经营和线下消费.O2O通过打折.提供信息.服务预订等方式,把线下商店的消息推送给互联网用户,从而将他们转换为自己的线下 ...
- bootstrap点滴
1.nav-stacked 这个属性可以决定 tab的变为竖的,不添加的话为横向的. 2.tab 横向的 ul中必须含有nav nav-tabs ul li a 中必须有data-toggle=&q ...
- nios II--实验4——按键中断软件部分
软件开发 首先,在硬件工程文件夹里面新建一个software的文件夹用于放置软件部分:打开toolsàNios II 11.0 Software Build Tools for Eclipse,需要进 ...
- python 登陆接口
#!/usr/bin/env pythonimport sysname = ''pw=''name_num = 0pw_num = 0#black_list = []with open('a.txt' ...
- Notes on 'Efficient Graph-Based Image Segmentation'
Notes on Efficient Graph-Based Image Segmentation 算法的目标 按照一种确定的标准, 将图片分割成细粒度的语义区域, 即Super pixel. 算法步 ...
- Javascript写俄罗斯方块游戏
俄罗斯方块这个游戏也做了移动端的兼容, 这个游戏难点是怎么翻转方块, 自己实现的方式是把方块放到一个二维数组, 然后逆时针旋转二维数组. 也有别的方法,比如直接用一个全局变量代表一个方向, 翻转的时候 ...