题目链接:http://lightoj.com/volume_showproblem.php?problem=1289

题意:求LCM(1, 2, 3, ... , n)%(1<<32), (1<n<=1e8);

LCM(1, 2, 3, ... , n) = n以内所有素数的最高次幂之积,例如15: 23*32*5*7*11*13 = 36360360;

为了防止TLE所以,要有一个数组表示前缀积,但是直接开LL会MLE是,因为有个%1<<32刚好是unsigned int之内,可以开int的数组;

关于求1e8内的素数表,用bool类型也会MLE的,所以可以使用bitset类型;

#include <stdio.h>
#include <string.h>
#include <math.h>
#include <algorithm>
#include <bitset>
#include <iostream>
#include <time.h> typedef long long LL; using namespace std; const int N = 1e8+;
const double eps = 1e-;
const int INF = 0x3f3f3f3f;
const LL mod = (1ll<<); int k, p[];
unsigned int Mul[];
bitset<N> f; void Init()
{
f.reset();
for(int i=; i<N; i++)
{
if(f[i]) continue;
p[k++] = i;
for(int j=i+i; j<N; j+=i)
f[j] = ;
}
} int main()
{
int T, t = ;
scanf("%d", &T); Init(); Mul[] = p[];
for(int i=; i<k; i++)
Mul[i] = Mul[i-]*p[i]; while(T --)
{
int n; scanf("%d", &n); int pos = upper_bound(p, p+k, n)-p - ; LL ans = Mul[pos]; for(int i=; i<k && (LL)p[i]*p[i]<=n; i++)
{
LL num = ;
while(num <= n)
num *= p[i];
if(num%(p[i]*p[i]) == ) num /= (p[i]*p[i]);
ans = ans*num%mod;
} printf("Case %d: %lld\n", t++, ans);
}
return ;
}

还有一种比较快一点的方法:

#include <stdio.h>
#include <string.h>
#include <math.h>
#include <algorithm>
#include <bitset>
#include <iostream>
#include <time.h> typedef long long LL; using namespace std; const int N = 1e8+;
const double eps = 1e-;
const int INF = 0x3f3f3f3f;
const LL mod = (1ll<<); int k = , p[], f[N/+];
unsigned int Mul[]; void Init()
{
p[k++] = ;
for(int i=; i<N; i+=)
{
if(f[i/]&(<<((i/)%)))
continue;
p[k++] = i;
for(int j=*i; j<N; j+=*i)
f[j/] |= (<<((j/)%));
}
///printf("%d\n", k);
} int main()
{
int T, t = ;
scanf("%d", &T); Init(); Mul[] = p[];
for(int i=; i<k; i++)
Mul[i] = Mul[i-]*p[i]; while(T --)
{
int n; scanf("%d", &n); int pos = upper_bound(p, p+k, n)-p - ; LL ans = Mul[pos]; for(int i=; i<k && (LL)p[i]*p[i]<=n; i++)
{
LL num = ;
while(num <= n)
num *= p[i];
if(num%(p[i]*p[i]) == ) num /= (p[i]*p[i]);
ans = ans*num%mod;
} printf("Case %d: %lld\n", t++, ans);
}
return ;
}

LightOj 1289 - LCM from 1 to n(LCM + 素数)的更多相关文章

  1. LightOJ 1289 LCM from 1 to n(位图标记+素数筛

    https://vjudge.net/contest/324284#problem/B 数学水题,其实就是想写下位图..和状压很像 题意:给n让求lcm(1,2,3,...,n),n<=1e8 ...

  2. HDU 1019 Least Common Multiple【gcd+lcm+水+多个数的lcm】

    Least Common Multiple Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Ot ...

  3. POJ-2429 GCD & LCM Inverse---给出gcd和lcm求原来两个数

    题目链接: https://cn.vjudge.net/problem/POJ-2429 题目大意: 给出两个数的gcd和lcm,求原来的这两个数(限定两数之和最小). 解题思路: 首先,知道gcd和 ...

  4. LightOJ 1236 - Pairs Forming LCM(素因子分解)

    B - Pairs Forming LCM Time Limit:2000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu ...

  5. LightOJ 1236 Pairs Forming LCM (LCM 唯一分解定理 + 素数筛选)

    http://lightoj.com/volume_showproblem.php?problem=1236 Pairs Forming LCM Time Limit:2000MS     Memor ...

  6. Pairs Forming LCM (LightOJ - 1236)【简单数论】【质因数分解】【算术基本定理】(未完成)

    Pairs Forming LCM (LightOJ - 1236)[简单数论][质因数分解][算术基本定理](未完成) 标签: 入门讲座题解 数论 题目描述 Find the result of t ...

  7. 1289 - LCM from 1 to n

    http://blog.csdn.net/acdreamers/article/details/18507767 这个是位图的链接,这篇写的挺好. 模板: 1 #include<math.h&g ...

  8. Pairs Forming LCM LightOJ - 1236 素因子分解

    Find the result of the following code: long long pairsFormLCM( int n ) {    long long res = 0;    fo ...

  9. LightOJ - 1236 - Pairs Forming LCM(唯一分解定理)

    链接: https://vjudge.net/problem/LightOJ-1236 题意: Find the result of the following code: long long pai ...

随机推荐

  1. BZOJ4382 : [POI2015]Podział naszyjnika

    对于每种颜色,可以发现可以切的位置被分割成了若干段独立的区域. 给每个区域一个编号,将$m$种颜色的情况当成字符串来看,如果两个切口的字符串完全匹配,那么可以在这里切两刀. 可以构造hash函数,通过 ...

  2. Storm分布式实时流计算框架相关技术总结

    Storm分布式实时流计算框架相关技术总结 Storm作为一个开源的分布式实时流计算框架,其内部实现使用了一些常用的技术,这里是对这些技术及其在Storm中作用的概括介绍.以此为基础,后续再深入了解S ...

  3. curl/wget 测试http请求的响应头信息

    1. wget –debug wget可以使用debug信息来查看信息头,如下: [root@localhost ~]# wget --debug http://192.168.1.101:8080/ ...

  4. html5代码,获取地理位置

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"/> <meta htt ...

  5. 转:苹果应用商店DNS修改加快下载速度

    苹果应用商店DNS修改加快下载速度 具体方法:依次点击进入[设置]→[无线局域网]→[WiFi网络右侧小i图标]→更改DNS地址,可以按照自身需求选择以下某个DNS进行更换. OpenDNS:208. ...

  6. CentOS6.4 安装OpenResty和Redis 并在Nginx中利用lua简单读取Redis数据

    1.下载OpenResty和Redis OpenResty下载地址:wget http://openresty.org/download/ngx_openresty-1.4.3.6.tar.gz Re ...

  7. 1301. The Trip

    A number of students are members of a club that travels annually to exotic locations. Their destinat ...

  8. This application is modifying the autolayout engine from a background thread, which can lead to engine corruption and weird crashes. This will cause an exception in a future release.

    一,经历 <1> 使用SDWebImage下载 成功图片后,将图片设置给 self.imageView.image,提示如题所示的错误提示. <2>第一反应就是慢慢注释掉代码进 ...

  9. Linux下bash: scp: command not found问题 或者装ssh包时报错 Requires: libedit.so.0()(64bit)

        一.用scp命令从物理主机向CentOS 6.1虚拟机传送文件,提示以下错误:bash: scp: command not found到CentOS 6.1虚拟机查看也缺少scp命令.该虚拟机 ...

  10. Net-SNMP是线程安全的吗

    原文地址 : http://www.net-snmp.org/wiki/index.php/FAQ:General_19 Net-SNMP是线程安全的吗? 确切的说,不是.不过呢,在多线程管理的应用进 ...