http://poj.org/problem?id=3648

题意:n对人(编号0~n-1,'w'表示第一个人,'h'表示第二个人),每对两个,人坐在桌子两侧。满足:1、每对人中的两个人不能坐在同一侧。2、m对关系x和y,表示x和y不能坐在同一侧,但是能坐在第0对的第一个人的那一侧。问第0对的第一个人那一侧坐着的人。

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <iostream>
using namespace std;
const int N=1005;
int tot, FF[N], LL[N], p[N], in[N], num, all, top, ok[N], vis[N], pos[N], n, m;
struct Gr {
int ihead[N], cnt;
struct E{ int next, to; }e[N*N<<2];
Gr() { cnt=0; memset(ihead, 0, sizeof ihead); }
void add(int u, int v) { e[++cnt]=(E){ihead[u], v}; ihead[u]=cnt; }
void tarjan(int x) {
static int s[N];
FF[x]=LL[x]=++tot; vis[x]=1; s[++top]=x;
for(int i=ihead[x]; i; i=e[i].next)
if(!FF[e[i].to]) tarjan(e[i].to), LL[x]=min(LL[x], LL[e[i].to]);
else if(vis[e[i].to]) LL[x]=min(LL[x], FF[e[i].to]);
if(FF[x]==LL[x]) {
int y; ++num;
do { y=s[top--]; vis[y]=0; p[y]=num; } while(x!=y);
}
}
void tarjan() { tot=0; top=0; num=0; for(int i=0; i<all; ++i) if(!FF[i]) tarjan(i); }
void rebuild(Gr &g) {
for(int x=0; x<all; ++x)
for(int i=ihead[x]; i; i=e[i].next) if(p[x]!=p[e[i].to])
in[p[x]]++, g.add(p[e[i].to], p[x]);
for(int x=0; x<all; x+=2) pos[p[x]]=p[x|1], pos[p[x|1]]=p[x];
}
void topo() {
static int q[N], front, tail; front=tail=0;
for(int i=0; i<num; ++i) if(!in[i]) q[tail++]=i;
while(front!=tail) {
int x=q[front++];
if(!ok[x]) ok[x]=1, ok[pos[x]]=2;
for(int i=ihead[x]; i; i=e[i].next) if(!(--in[e[i].to])) q[tail++]=e[i].to;
}
}
void clr() {
memset(ihead, 0, sizeof(int)*(all));
cnt=0;
}
}g, G;
void clr() {
memset(FF, 0, sizeof(int)*(all));
memset(in, 0, sizeof(int)*(all));
memset(ok, 0, sizeof(int)*(all));
memset(p, 0, sizeof(int)*(all));
memset(pos, 0, sizeof(int)*(all));
G.clr(); g.clr();
all=0;
}
bool work() {
all=n<<1;
g.tarjan();
for(int i=0; i<all; i+=2) if(p[i]==p[i+1]) return 0;
g.rebuild(G);
G.topo();
int white=ok[p[0]]; // printf("%d\n", white);
for(int i=1; i<n-1; ++i) printf("%d%c ", i, white==ok[p[i<<1]]?'w':'h');
printf("%d%c\n", n-1, white==ok[p[(n-1)<<1]]?'w':'h');
return 1;
}
int main() {
while(scanf("%d%d", &n, &m), !(n==0&&m==0)) {
for(int i=0; i<m; ++i) {
static char s1, s2;
int x, y;
scanf("%d%c%d%c", &x, &s1, &y, &s2);
int a=x<<1|(s1=='h'),
b=y<<1|(s2=='h');
g.add(a, b^1); g.add(b, a^1);
}
g.add(0, 1);
if(!work()) puts("bad luck");
clr();
}
return 0;
}

  

一开始写的好几个都给wa了= =因为感觉整个题我写得都有问题,所以一怒之下我删了!然后看别人家的代码= =(但是后来发现本题有一个坑,就是读入的时候可能没有空格,因此不能读入"%s%s"= =,会不会这样就能a掉了呢= =)

这题我做得很郁闷= =各种不想说了..

大家请转移阵地(请结合三份题解一起看= =感觉各有缺漏= =)= =http://www.cnblogs.com/staginner/archive/2011/10/02/2198263.htmlhttp://www.cnblogs.com/kuangbin/archive/2012/10/05/2712429.htmlhttp://blog.csdn.net/qq172108805/article/details/7603351

(这里我不得不说一下= =状态设的是第0对第一个人的“对面”= =大家千万不要搞错了= =

那么 x -> y'的意思表示x坐在对面那么y'一定也坐在对面

最后0w -> 0h表示0对人只有h人坐在对面。

【POJ】3648 Wedding的更多相关文章

  1. 【POJ】1704 Georgia and Bob(Staircase Nim)

    Description Georgia and Bob decide to play a self-invented game. They draw a row of grids on paper, ...

  2. 【POJ】1067 取石子游戏(博弈论)

    Description 有两堆石子,数量任意,可以不同.游戏开始由两个人轮流取石子.游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子:二是可以在两堆中同时取走相同数量的石子.最后 ...

  3. 【BZOJ】【1986】【USACO 2004 Dec】/【POJ】【2373】划区灌溉

    DP/单调队列优化 首先不考虑奶牛的喜欢区间,dp方程当然是比较显然的:$ f[i]=min(f[k])+1,i-2*b \leq k \leq i-2*a $  当然这里的$i$和$k$都是偶数啦~ ...

  4. 【POJ】【2104】区间第K大

    可持久化线段树 可持久化线段树是一种神奇的数据结构,它跟我们原来常用的线段树不同,它每次更新是不更改原来数据的,而是新开节点,维护它的历史版本,实现“可持久化”.(当然视情况也会有需要修改的时候) 可 ...

  5. 【POJ】1222 EXTENDED LIGHTS OUT

    [算法]高斯消元 [题解] 高斯消元经典题型:异或方程组 poj 1222 高斯消元详解 异或相当于相加后mod2 异或方程组就是把加减消元全部改为异或. 异或性质:00 11为假,01 10为真.与 ...

  6. 【POJ】2892 Tunnel Warfare

    [算法]平衡树(treap) [题解]treap知识见数据结构 在POJ把语言从G++换成C++就过了……??? #include<cstdio> #include<algorith ...

  7. 【POJ】【1637】Sightseeing tour

    网络流/最大流 愚人节快乐XD 这题是给一个混合图(既有有向边又有无向边),让你判断是否有欧拉回路…… 我们知道如果一个[连通]图中每个节点都满足[入度=出度]那么就一定有欧拉回路…… 那么每条边都可 ...

  8. 【poj】1001

    [题目] ExponentiationTime Limit: 500MS Memory Limit: 10000KTotal Submissions: 123707 Accepted: 30202De ...

  9. 【POJ】3070 Fibonacci

    [算法]矩阵快速幂 [题解] 根据f[n]=f[n-1]+f[n-2],可以构造递推矩阵: $$\begin{vmatrix}1 & 1\\ 1 & 0\end{vmatrix} \t ...

随机推荐

  1. 【JAVA使用XPath、DOM4J解析XML文件,实现对XML文件的CRUD操作】

    一.简介 1.使用XPath可以快速精确定位指定的节点,以实现对XML文件的CRUD操作. 2.去网上下载一个“XPath帮助文档”,以便于查看语法等详细信息,最好是那种有很多实例的那种. 3.学习X ...

  2. 在Activity和Application中使用SharedPreferences存储数据

    1.在Activity中创建SharedPreferences对象及操作方法 SharedPreferences pre=getSharedPreferences("User", ...

  3. ZLL网关程序分析

    主机接口 zllSocCmd.h(ZLL的Socket主机接口) 此模块包含ZLL的Socket主机接口API.其包含的函数方法在zllSocCmd.c中实现 ZLL Soc Types 定义了描述设 ...

  4. [荐]Js apply()和call()方法详解 - http://www.w3cfuns.com/article-5596443-1-1.html

    本帖最后由 默默DE人生 于 2013-3-19 13:22 编辑 Js apply方法详解我在一开始看到javascript的函数apply和call时,非常的模糊,看也看不懂,最近在网上看到一些文 ...

  5. MySQL中的约束简单使用

    数据库约束是为了保证数据的完整性而实现的一套机制,它具体的根据各个不同的数据库的实现而有不同的工具.一般来说有以下几种实现方式:1.检查约束:通过在定义数据库表里,在字段级或者是在表级加入的检查约束, ...

  6. Win7 Object_Header之TypeIndex解析

    在暴力搜索内存进程对象反隐藏进程这篇文章中,我们提到: Object Header偏移0×008处Type成员为对象类型值,相同类型的对象具有相同的值.  自Window  7开始, _OBJECT_ ...

  7. windows进程中的内存结构[转载]

    在阅读本文之前,如果你连堆栈是什么多不知道的话,请先阅读文章后面的基础知识. 接触过编程的人都知道,高级语言都能通过变量名来访问内存中的数据.那么这些变量在内存中是如何存放的呢?程序又是如何使用这些变 ...

  8. XSS攻击&SQL注入攻击&CSRF攻击?

    - XSS(Cross Site Script,跨站脚本攻击)是向网页中注入恶意脚本在用户浏览网页时在用户浏览器中执行恶意脚本的攻击方式.跨站脚本攻击分有两种形式:反射型攻击(诱使用户点击一个嵌入恶意 ...

  9. node.js整理 05进程管理

    简介 NodeJS可以感知和控制自身进程的运行环境和状态,也可以创建子进程并与其协同工作,这使得NodeJS可以把多个程序组合在一起共同完成某项工作,并在其中充当胶水和调度器的作用 常用API Pro ...

  10. [技术学习]js继承

    今天又看了一遍js的面向对象方面的知识,重点看了继承相关内容,已经记不得看了第几次这个内容,终于觉得自己好像懂了,特记录下来过程. js面向对象继承分为两大类,主要分为对象继承和非对象继承(拷贝继承) ...