Codeforces #369 div2 D.Directed Roads
D. Directed Roads
time limit per test2 seconds
memory limit per test256 megabytes
inputstandard input
outputstandard output
ZS the Coder and Chris the Baboon has explored Udayland for quite some time. They realize that it consists of n towns numbered from 1 to n.
There are n directed roads in the Udayland. i-th of them goes from town i to some other town ai (ai ≠ i). ZS the Coder can flip the direction of any road in Udayland, i.e. if it goes from town A to town B before the flip, it will go from town B to town A after.
ZS the Coder considers the roads in the Udayland confusing, if there is a sequence of distinct towns A1, A2, …, Ak (k > 1) such that for every 1 ≤ i < k there is a road from town Ai to town Ai + 1 and another road from town Ak to town A1. In other words, the roads are confusing if some of them form a directed cycle of some towns.
Now ZS the Coder wonders how many sets of roads (there are 2n variants) in initial configuration can he choose to flip such that after flipping each road in the set exactly once, the resulting network will not be confusing.
Note that it is allowed that after the flipping there are more than one directed road from some town and possibly some towns with no roads leading out of it, or multiple roads between any pair of cities.
Input
The first line of the input contains single integer n (2 ≤ n ≤ 2·105) — the number of towns in Udayland.
The next line contains n integers a1, a2, …, an (1 ≤ ai ≤ n, ai ≠ i), ai denotes a road going from town i to town ai.
Output
Print a single integer — the number of ways to flip some set of the roads so that the resulting whole set of all roads is not confusing. Since this number may be too large, print the answer modulo 109 + 7.
Examples
input
3
2 3 1
output
6
input
4
2 1 1 1
output
8
input
5
2 4 2 5 3
output
28
题意:有N个点,每个点都向其他一个点连一条有向边,形成一个N个点,N条有向边的图, 图可能有环。现在选取其中的一些边改变方向,使得图中没有环,求改变的方法数。
思路:可以想到把图按照环分块,把在同一个环中的点染成一个颜色,把其余点,也就是说不在环中的点归为另一类。
假设环中有k条边,那么每个环中有挑选一条,两条……k - 1条边进行改变方向。(1k)+(2k)+……+(k−1k) 种, 为2k−2;剩下不在环中的边不论任意地变化都不会改变图环的数量,假设剩下有N- kk条边,则为2N−kk。乘法原理相乘,取模。每次dfs一个没有跑过的点,就行了。
复杂度O(N)
代码:
/*****************************************************/
//#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <map>
#include <set>
#include <ctime>
#include <stack>
#include <queue>
#include <cmath>
#include <string>
#include <vector>
#include <cstdio>
#include <cctype>
#include <cstring>
#include <sstream>
#include <cstdlib>
#include <iostream>
#include <algorithm>
using namespace std;
#define offcin ios::sync_with_stdio(false)
#define sigma_size 26
#define lson l,m,v<<1
#define rson m+1,r,v<<1|1
#define slch v<<1
#define srch v<<1|1
#define sgetmid int m = (l+r)>>1
#define LL long long
#define ull unsigned long long
#define mem(x,v) memset(x,v,sizeof(x))
#define lowbit(x) (x&-x)
#define bits(a) __builtin_popcount(a)
#define mk make_pair
#define pb push_back
#define fi first
#define se second
const int INF = 0x3f3f3f3f;
const LL INFF = 1e18;
const double pi = acos(-1.0);
const double inf = 1e18;
const double eps = 1e-9;
const LL mod = 1e9+7;
const int maxmat = 10;
const ull BASE = 31;
/*****************************************************/
const int maxn = 2e5 + 5;
std::vector<int> G[maxn];
int pre[maxn], dfs_clock, block[maxn];
LL qpow(LL a, LL b) {
LL res = 1;
while (b) {
if (b & 1) res = res * a % mod;
a = a * a % mod;
b >>= 1;
}
return res;
}
int dfs(int u, int c) {
block[u] = c;
if (pre[u]) {
int tmp = dfs_clock + 1 - pre[u];
pre[u] = ++dfs_clock;
return tmp;
}
else {
pre[u] = ++dfs_clock;
for (int i = 0; i < G[u].size(); i ++) {
int v = G[u][i];
if (block[v] && block[v] != c) continue;
return dfs(v, c);
}
return 0;
}
}
void work(int N) {
mem(pre, 0);
mem(block, 0);
dfs_clock = 0;
int ans = 0, color = 0;
LL res = 1;
for (int i = 1; i <= N; i ++) {
if (!pre[i]) {
int loop = dfs(i, ++color);
ans += loop;
if (loop) res = res * (qpow(2, loop) - 2) % mod;
}
}
res = res * qpow(2, N - ans) % mod;
cout<<res<<endl;
}
int main(int argc, char const *argv[]) {
int N;
cin>>N;
for (int i = 1; i <= N; i ++) {
int k;
scanf("%d", &k);
G[i].pb(k);
}
work(N);
return 0;
}
萌新第一次发博客,写得不好见谅。
Codeforces #369 div2 D.Directed Roads的更多相关文章
- CodeForces #369 div2 D Directed Roads DFS
题目链接:D Directed Roads 题意:给出n个点和n条边,n条边一定都是从1~n点出发的有向边.这个图被认为是有环的,现在问你有多少个边的set,满足对这个set里的所有边恰好反转一次(方 ...
- codeforces 369 div2 C dp
http://codeforces.com/contest/711 C. Coloring Trees time limit per test 2 seconds memory limit per t ...
- Codeforces Round #369 (Div. 2) D. Directed Roads 数学
D. Directed Roads 题目连接: http://www.codeforces.com/contest/711/problem/D Description ZS the Coder and ...
- Codeforces Round #369 (Div. 2) D. Directed Roads —— DFS找环 + 快速幂
题目链接:http://codeforces.com/problemset/problem/711/D D. Directed Roads time limit per test 2 seconds ...
- Codeforces Round #369 (Div. 2) D. Directed Roads dfs求某个联通块的在环上的点的数量
D. Directed Roads ZS the Coder and Chris the Baboon has explored Udayland for quite some time. The ...
- Codeforces Round #369 (Div. 2) D. Directed Roads (DFS)
D. Directed Roads time limit per test 2 seconds memory limit per test 256 megabytes input standard i ...
- Codeforces 711D Directed Roads - 组合数学
ZS the Coder and Chris the Baboon has explored Udayland for quite some time. They realize that it co ...
- codeforces 711D D. Directed Roads(dfs)
题目链接: D. Directed Roads time limit per test 2 seconds memory limit per test 256 megabytes input stan ...
- 【34.40%】【codeforces 711D】Directed Roads
time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...
随机推荐
- paper 112:hellinger distance
在概率论和统计理论中,Hellinger距离被用来度量两个概率分布的相似度.它是f散度的一种(f散度——度量两个概率分布相似度的指标).Hellinger距离被定义成Hellinger积分的形式,这种 ...
- PhoneGap中navigator.notification.confirm的用法详解
navigator.notification.confirm('您确定要退出程序吗?', showConfirm, '退出程序', '确定,取消'); function showConfirm(but ...
- html5,导航
<!DOCTYPE html><html lang="en"><head> <meta charset="UTF-8&qu ...
- 关于学习Knockoutjs--入门(一)
前段时间做项目一直在用knockout,虽然用着不怎么利索,但是知识是一点一点探索的. 首先介绍一下 Knockout是什么? 他是一个很优秀的js库,他最大的功能就是实现双向绑定,它可以帮助你仅使用 ...
- Xcode7编译打包后,iOS9设备无法打开http网址的问题
在info.plist中添加一个节点: <key>NSAppTransportSecurity</key> <dict> <key>NSAllowsAr ...
- aliyun的yum源(国内速度极快)
公网(家里宽带下载速度达到1-3.5M): http://mirrors.aliyun.com/repo/Centos-6.repo 内网(购买的阿里云主机可以访问): http://mirrors. ...
- R实战之热点图(HeatMap)
快速实现是搜索帮助文档的首要目的,所以此处涉及实战的文章一概略去传统帮助文档的理论部分,直接上代码加注释! 本文将介绍R语言下利用ggplot2包制作heatmap的代码 -------------- ...
- [HIHO1052]基因工程(找规律)
题目链接:http://hihocoder.com/problemset/problem/1052 题意:中文题面,就是修改其中几个字符,使得[0,k-1]和[n-k,n-1]的字符相同. 会发现一个 ...
- 后勤数据抽取流程图 Logistic Data Extraction
声明:原创作品,转载时请注明文章来自SAP师太技术博客( 博/客/园www.cnblogs.com):www.cnblogs.com/jiangzhengjun,并以超链接形式标明文章原始出处,否则将 ...
- VB6中的引用传递 与 VB.NET中的引用传递的区别
首先注意一点,在VB6中缺省参数传递的方式是:引用传递,而在VB.NET中缺省参数传递的方式是:值传递. 然后我们看下面VB6中的引用传递与VB.NET中的引用传递的对比. VB6中的引用传递 Pri ...