Codeforces #369 div2 D.Directed Roads
D. Directed Roads
time limit per test2 seconds
memory limit per test256 megabytes
inputstandard input
outputstandard output
ZS the Coder and Chris the Baboon has explored Udayland for quite some time. They realize that it consists of n towns numbered from 1 to n.
There are n directed roads in the Udayland. i-th of them goes from town i to some other town ai (ai ≠ i). ZS the Coder can flip the direction of any road in Udayland, i.e. if it goes from town A to town B before the flip, it will go from town B to town A after.
ZS the Coder considers the roads in the Udayland confusing, if there is a sequence of distinct towns A1, A2, …, Ak (k > 1) such that for every 1 ≤ i < k there is a road from town Ai to town Ai + 1 and another road from town Ak to town A1. In other words, the roads are confusing if some of them form a directed cycle of some towns.
Now ZS the Coder wonders how many sets of roads (there are 2n variants) in initial configuration can he choose to flip such that after flipping each road in the set exactly once, the resulting network will not be confusing.
Note that it is allowed that after the flipping there are more than one directed road from some town and possibly some towns with no roads leading out of it, or multiple roads between any pair of cities.
Input
The first line of the input contains single integer n (2 ≤ n ≤ 2·105) — the number of towns in Udayland.
The next line contains n integers a1, a2, …, an (1 ≤ ai ≤ n, ai ≠ i), ai denotes a road going from town i to town ai.
Output
Print a single integer — the number of ways to flip some set of the roads so that the resulting whole set of all roads is not confusing. Since this number may be too large, print the answer modulo 109 + 7.
Examples
input
3
2 3 1
output
6
input
4
2 1 1 1
output
8
input
5
2 4 2 5 3
output
28
题意:有N个点,每个点都向其他一个点连一条有向边,形成一个N个点,N条有向边的图, 图可能有环。现在选取其中的一些边改变方向,使得图中没有环,求改变的方法数。
思路:可以想到把图按照环分块,把在同一个环中的点染成一个颜色,把其余点,也就是说不在环中的点归为另一类。
假设环中有k条边,那么每个环中有挑选一条,两条……k - 1条边进行改变方向。(1k)+(2k)+……+(k−1k) 种, 为2k−2;剩下不在环中的边不论任意地变化都不会改变图环的数量,假设剩下有N- kk条边,则为2N−kk。乘法原理相乘,取模。每次dfs一个没有跑过的点,就行了。
复杂度O(N)
代码:
/*****************************************************/
//#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <map>
#include <set>
#include <ctime>
#include <stack>
#include <queue>
#include <cmath>
#include <string>
#include <vector>
#include <cstdio>
#include <cctype>
#include <cstring>
#include <sstream>
#include <cstdlib>
#include <iostream>
#include <algorithm>
using namespace std;
#define offcin ios::sync_with_stdio(false)
#define sigma_size 26
#define lson l,m,v<<1
#define rson m+1,r,v<<1|1
#define slch v<<1
#define srch v<<1|1
#define sgetmid int m = (l+r)>>1
#define LL long long
#define ull unsigned long long
#define mem(x,v) memset(x,v,sizeof(x))
#define lowbit(x) (x&-x)
#define bits(a) __builtin_popcount(a)
#define mk make_pair
#define pb push_back
#define fi first
#define se second
const int INF = 0x3f3f3f3f;
const LL INFF = 1e18;
const double pi = acos(-1.0);
const double inf = 1e18;
const double eps = 1e-9;
const LL mod = 1e9+7;
const int maxmat = 10;
const ull BASE = 31;
/*****************************************************/
const int maxn = 2e5 + 5;
std::vector<int> G[maxn];
int pre[maxn], dfs_clock, block[maxn];
LL qpow(LL a, LL b) {
LL res = 1;
while (b) {
if (b & 1) res = res * a % mod;
a = a * a % mod;
b >>= 1;
}
return res;
}
int dfs(int u, int c) {
block[u] = c;
if (pre[u]) {
int tmp = dfs_clock + 1 - pre[u];
pre[u] = ++dfs_clock;
return tmp;
}
else {
pre[u] = ++dfs_clock;
for (int i = 0; i < G[u].size(); i ++) {
int v = G[u][i];
if (block[v] && block[v] != c) continue;
return dfs(v, c);
}
return 0;
}
}
void work(int N) {
mem(pre, 0);
mem(block, 0);
dfs_clock = 0;
int ans = 0, color = 0;
LL res = 1;
for (int i = 1; i <= N; i ++) {
if (!pre[i]) {
int loop = dfs(i, ++color);
ans += loop;
if (loop) res = res * (qpow(2, loop) - 2) % mod;
}
}
res = res * qpow(2, N - ans) % mod;
cout<<res<<endl;
}
int main(int argc, char const *argv[]) {
int N;
cin>>N;
for (int i = 1; i <= N; i ++) {
int k;
scanf("%d", &k);
G[i].pb(k);
}
work(N);
return 0;
}
萌新第一次发博客,写得不好见谅。
Codeforces #369 div2 D.Directed Roads的更多相关文章
- CodeForces #369 div2 D Directed Roads DFS
题目链接:D Directed Roads 题意:给出n个点和n条边,n条边一定都是从1~n点出发的有向边.这个图被认为是有环的,现在问你有多少个边的set,满足对这个set里的所有边恰好反转一次(方 ...
- codeforces 369 div2 C dp
http://codeforces.com/contest/711 C. Coloring Trees time limit per test 2 seconds memory limit per t ...
- Codeforces Round #369 (Div. 2) D. Directed Roads 数学
D. Directed Roads 题目连接: http://www.codeforces.com/contest/711/problem/D Description ZS the Coder and ...
- Codeforces Round #369 (Div. 2) D. Directed Roads —— DFS找环 + 快速幂
题目链接:http://codeforces.com/problemset/problem/711/D D. Directed Roads time limit per test 2 seconds ...
- Codeforces Round #369 (Div. 2) D. Directed Roads dfs求某个联通块的在环上的点的数量
D. Directed Roads ZS the Coder and Chris the Baboon has explored Udayland for quite some time. The ...
- Codeforces Round #369 (Div. 2) D. Directed Roads (DFS)
D. Directed Roads time limit per test 2 seconds memory limit per test 256 megabytes input standard i ...
- Codeforces 711D Directed Roads - 组合数学
ZS the Coder and Chris the Baboon has explored Udayland for quite some time. They realize that it co ...
- codeforces 711D D. Directed Roads(dfs)
题目链接: D. Directed Roads time limit per test 2 seconds memory limit per test 256 megabytes input stan ...
- 【34.40%】【codeforces 711D】Directed Roads
time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...
随机推荐
- 定时往oracle插入数据
1创建存储过程 create or replace procedure job_proc isbegininsert into yy (yid) values (sysdate);end; 2创建jo ...
- C# xml压缩包不解压的情况下解析xml内容
string sourceFilePath = @"E:\文件拷贝\xx\3773\3773.zip"; FileInfo fileInfo = new FileInfo(sour ...
- Python 迭代器&生成器
1.内置参数 Built-in Functions abs() dict() help() min() setattr() all() dir() hex() next() slice ...
- Linux操作系统备份之一:使用LVM快照实现Linux操作系统数据的在线备份
这里我们讨论Linux操作系统的备份. 在生产环境,客户都会要求做全系统的数据备份,用于系统崩溃后的一种恢复手段.这其中就包含操作系统数据的备份恢复. 由于是生产环境,客户都会要求备份不中断业务,也就 ...
- HTML5 UI框架Kendo UI Web中如何创建自定义组件(二)
在前面的文章<HTML5 UI框架Kendo UI Web自定义组件(一)>中,对在Kendo UI Web中如何创建自定义组件作出了一些基础讲解,下面将继续前面的内容. 使用一个数据源 ...
- Json.net对于导航属性的处理(解决对象循环引用)
对于两张表A.B多对多的关系中,A的导航属性中有B,B的导航属性中有A,这样Json.net对A或者B对象序列化时会形成死循环 所以对于导航属性要加标签 首先在A.B实体类工程(Model)中引用Js ...
- Proteus 8 画原理图仿真 1602 LCD显示字符
以下是源程序: #include <reg52.h> #include<intrins.h> /** * P2 上接的是 D1 ~ D7 */ sbit RS = P3 ^ ; ...
- linux上使用amoeba实现MySql集群,以及读写分离,主从复制
一.由于是MySql集群,所以就不可能只有一个MySql,需要多个MySql,具体安装步骤,可以参考http://www.cnblogs.com/ywzq/p/4882140.html这个地址进行安装 ...
- python matplotlib 中文显示参数设置
python matplotlib 中文显示参数设置 方法一:每次编写代码时进行参数设置 #coding:utf-8import matplotlib.pyplot as pltplt.rcParam ...
- Oracle的排序和限制条件(order by 和where)
1.Order by 子句的使用 select column.... from .... order by ... 1) Order by子句在整个 select语句中的位置: 始终位于最后 2) o ...