Given an array of integers with possible duplicates, randomly output the index of a given target number. You can assume that the given target number must exist in the array.

Note:
The array size can be very large. Solution that uses too much extra space will not pass the judge.

Example:

int[] nums = new int[] {1,2,3,3,3};
Solution solution = new Solution(nums); // pick(3) should return either index 2, 3, or 4 randomly. Each index should have equal probability of returning.
solution.pick(3); // pick(1) should return 0. Since in the array only nums[0] is equal to 1.
solution.pick(1);
 public class Solution {

     int[] nums;
Random r = new Random(); public Solution(int[] nums) {
this.nums = nums;
} public int pick(int target) {
ArrayList<Integer> idxs = new ArrayList<Integer>();
for (int i = ; i < nums.length; i++) {
if (target == nums[i]) {
idxs.add(i);
}
}
return idxs.get(r.nextInt(idxs.size()));
}
}

Simple Reservior Sampling approach

 public class Solution {

     int[] nums;
Random rnd; public Solution(int[] nums) {
this.nums = nums;
this.rnd = new Random();
} public int pick(int target) {
int result = -;
int count = ;
for (int i = ; i < nums.length; i++) {
if (nums[i] != target)
continue;
if (rnd.nextInt(++count) == )
result = i;
} return result;
}
}

Simple Reservior Sampling

Suppose we see a sequence of items, one at a time. We want to keep a single item in memory, and we want it to be selected at random from the sequence. If we know the total number of items (n), then the solution is easy: select an index ibetween 1 and n with equal probability, and keep the i-th element. The problem is that we do not always know n in advance. A possible solution is the following:

  • Keep the first item in memory.
  • When the i-th item arrives (for {\displaystyle i>1}):
    • with probability {\displaystyle 1/i}, keep the new item (discard the old one)
    • with probability {\displaystyle 1-1/i}, keep the old item (ignore the new one)

So:

  • when there is only one item, it is kept with probability 1;
  • when there are 2 items, each of them is kept with probability 1/2;
  • when there are 3 items, the third item is kept with probability 1/3, and each of the previous 2 items is also kept with probability (1/2)(1-1/3) = (1/2)(2/3) = 1/3;
  • by induction, it is easy to prove that when there are n items, each item is kept with probability 1/n.

Random Pick Index的更多相关文章

  1. 398. Random Pick Index - LeetCode

    Question 398. Random Pick Index Solution 思路:重点是如果数据中有多个数target相等,要从这些数中随机取一个,根据例题 假设输入是: int[] nums ...

  2. [LeetCode] Random Pick Index 随机拾取序列

    Given an array of integers with possible duplicates, randomly output the index of a given target num ...

  3. Leetcode: Random Pick Index

    Given an array of integers with possible duplicates, randomly output the index of a given target num ...

  4. [Swift]LeetCode398. 随机数索引 | Random Pick Index

    Given an array of integers with possible duplicates, randomly output the index of a given target num ...

  5. [LeetCode] 398. Random Pick Index ☆☆☆

    Given an array of integers with possible duplicates, randomly output the index of a given target num ...

  6. 398. Random Pick Index随机pick函数

    [抄题]: Given an array of integers with possible duplicates, randomly output the index of a given targ ...

  7. [LC] 398. Random Pick Index

    Given an array of integers with possible duplicates, randomly output the index of a given target num ...

  8. 【LeetCode】398. Random Pick Index 解题报告(Python & C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 每次遍历索引 字典保存索引 蓄水池抽样 日期 题目地 ...

  9. [leetcode] 398. Random Pick Index

    我是链接 看到这道题,想到做的几道什么洗牌的题,感觉自己不是很熟,但也就是rand()函数的调用,刚开始用map<int, vector<int >>来做,tle,后来就想着直 ...

随机推荐

  1. C#中事件的使用

    C#中事件的使用  http://www.cnblogs.com/wayfarer/archive/2004/04/20/6712.html 用一个例子来说明事件的使用. 创建一个简单的类,名为Fil ...

  2. phpcms v9 0day

    index.php?m=member&c=index&a=login 后缀 username=phpcms&password=123456%26username%3d%2527 ...

  3. VC亲自教你写BP

    2015年5月24日下午,腾讯开放平台“创业ABC”沙龙在腾讯众创空间(上海)举行.活动以“创业融资实战——从计划书到如何估值到如何花钱”为主题,险峰华兴投资负责人徐建海先生现场分享<如何写BP ...

  4. 昨天所写的JQ 点击隐藏事件,关键性原理

    JQ 点击隐藏事件,关键性原理 1.JQ 库的调用 一般选择为: 1)库越小越好 2)库的功能越强大越好 <script src="js/jquery.js" type=&q ...

  5. 从零学习storm(一) 环境的安装配置

    1.首先 安装zookeeper   2.安装Java环境   3.安装Python   下载python包,编译安装     1.解压      2.configure     3.make     ...

  6. hdu4965 Fast Matrix Calculation (矩阵快速幂 结合律

    http://acm.hdu.edu.cn/showproblem.php?pid=4965 2014 Multi-University Training Contest 9 1006 Fast Ma ...

  7. thinkphp伪静态(url重写)

    1. 服务器开启url_rewrite功能,linux空间的php虚拟主机只需要开启apache的mod_rewriet,如果是iis6.0就要安装ISAPI Rewrite模块,apache只要开启 ...

  8. 【转载】android中.9png

    在Android的设计过程中,为了适配不同的手机分辨率,图片大多需要拉伸或者压缩,这样就出现了可以任意调整大小的一种图片格式“.9.png”.这种图片是用于Android开发的一种特殊的图片格式,它的 ...

  9. 利用flexbox实现按字符长度排列dom元素

    说明:请使用chrome浏览器打开 See the Pen pvyjGV by lilyH (@lilyH) on CodePen. 如上图所示,我们你要实现的效果就是,(1)在一行中显示两块元素:( ...

  10. C++ Singleton模式

    地址:http://www.cppblog.com/dyj057/archive/2005/09/20/346.html Singleton模式是常用的设计模式之一,但是要实现一个真正实用的设计模式却 ...