最长递增子序列是动态规划中经典的问题,详细如下:

在一个已知的序列{a1,a2,...,an}中,取出若干数组组成新的序列{ai1,ai2,...,aim},其中下标i1,i2,...,im保持递增,即新数列中的各个数之间依旧保持原数列中的先后顺序,那么我们称新的序列{ai1,ai2,...,aim}为原序列的一个子序列。若在子序列中,当下标ix > iy时,aix > aiy,那么我们称这个子序列为原序列的一个递增子序列。最长递增子序列问题,就是在一个给定的原序列中,求得最长递增子序列长度。

有序列{a1,a2,...,an},我们求其最长递增子序列长度。按照递推求解的思想,我们用F[i]代表若递增子序列以ai结束时它的最长长度。当 i 较小,我们容易直接得出其值,如 F[1] = 1。那么,如何由已经求得的 F[i]值推得后面的值呢?假设,F[1]到F[x-1]的值都已经确定,注意到,以ax 结尾的递增子序列,除了长度为1的情况,其它情况中,ax都是紧跟在一个由 ai(i < x)组成递增子序列之后。要求以ax结尾的最长递增子序列长度,我们依次比较 ax 与其之前所有的 ai(i < x), 若ai小于 ax,则说明ax可以跟在以ai结尾的递增子序列之后,形成一个新的递 增子序列。又因为以ai结尾的递增子序列最长长度已经求得,那么在这种情况下,由以 ai 结尾的最长递增子序列再加上 ax 得到的新的序列,其长度也可以确定,取所有这些长度的最大值,我们即能得到 F[x]的值。特殊的,当没有ai(i < x)小 于ax, 那么以 ax 结尾的递增子序列最长长度为1。 即F[x] = max{1,F[i]+1|ai<ax && i<x};

例如序列{1,4,3,2,6,5}的最长递增子序列长度的所有F[i]为:

F[1] (1) F[2](4) F[3](3) F[4](2) F[5](6) F[6](5)
1 2 2 2 3 3

总结一下,求最长递增子序列的递推公式为:

F[1] = 1;

F[i] = max{1,F[j]+1|aj<ai && j<i}

我们可以根据递推公式将算法实现

#include <iostream>
using namespace std;
const int MAXSIZE = ;
const int MIN = ;
int arr[] = { , , , , , };
int F[MAXSIZE];
int main()
{
int maxLen = MIN;
memset(F, , MAXSIZE);
F[] = ;
for (int i = ; i < ; i++)
{
for (int j = ; j < i; j++)
{
if (arr[i] > arr[j] && maxLen < F[j])
{
maxLen = F[j];
}
} F[i] = maxLen + ;
} for (int k = ; k < ; k++)
cout << F[k] << ' ';
cout << endl;
}

动态规划 - 最长递增子序列(LIS)的更多相关文章

  1. 算法之动态规划(最长递增子序列——LIS)

    最长递增子序列是动态规划中最经典的问题之一,我们从讨论这个问题开始,循序渐进的了解动态规划的相关知识要点. 在一个已知的序列 {a1, a 2,...an}中,取出若干数组成新的序列{ai1, ai ...

  2. 动态规划(DP),最长递增子序列(LIS)

    题目链接:http://poj.org/problem?id=2533 解题报告: 状态转移方程: dp[i]表示以a[i]为结尾的LIS长度 状态转移方程: dp[0]=1; dp[i]=max(d ...

  3. 2.16 最长递增子序列 LIS

    [本文链接] http://www.cnblogs.com/hellogiser/p/dp-of-LIS.html [分析] 思路一:设序列为A,对序列进行排序后得到B,那么A的最长递增子序列LIS就 ...

  4. 最长回文子序列LCS,最长递增子序列LIS及相互联系

    最长公共子序列LCS Lintcode 77. 最长公共子序列 LCS问题是求两个字符串的最长公共子序列 \[ dp[i][j] = \left\{\begin{matrix} & max(d ...

  5. 一个数组求其最长递增子序列(LIS)

    一个数组求其最长递增子序列(LIS) 例如数组{3, 1, 4, 2, 3, 9, 4, 6}的LIS是{1, 2, 3, 4, 6},长度为5,假设数组长度为N,求数组的LIS的长度, 需要一个额外 ...

  6. 动态规划----最长递增子序列问题(LIS)

    题目: 输出最长递增子序列的长度,如输入 4 2 3 1 5 6,输出 4 (因为 2 3 5 6组成了最长递增子序列). 暴力破解法:这种方法很简单,两层for循环搞定,时间复杂度是O(N2). 动 ...

  7. 算法面试题 之 最长递增子序列 LIS

    找出最长递增序列 O(NlogN)(不一定连续!) 参考 http://www.felix021.com/blog/read.php?1587%E5%8F%AF%E6%98%AF%E8%BF%9E%E ...

  8. 最长递增子序列 LIS 时间复杂度O(nlogn)的Java实现

    关于最长递增子序列时间复杂度O(n^2)的实现方法在博客http://blog.csdn.net/iniegang/article/details/47379873(最长递增子序列 Java实现)中已 ...

  9. 动态规划--最长上升子序列(LIS)的长度

    l例如:对于[3,1,4,2,5],最长上升子序列的长度是3 arr = [3,1,4,5,9,2,6,5,0] def lis(arr): #dp[i]表示第i个位置的值为尾的数组的最长递增子序列的 ...

随机推荐

  1. zipalign内存对齐优化

    zipalign:android中SDK下tools文件夹 用来对资源文件的内存进行对齐优化 手工命令: 优化:zipalign -v 4 source.apk destination.apk 4: ...

  2. docker 源码分析 一(基于1.8.2版本),docker daemon启动过程;

    最近在研究golang,也学习一下比较火的开源项目docker的源代码,国内比较出名的docker源码分析是孙宏亮大牛写的一系列文章,但是基于的docker版本有点老:索性自己就git 了一下最新的代 ...

  3. (spring-第19回【AOP基础篇】)基于AspectJ和Schema的AOP

    基于AspectJ就是基于@AspectJ注解,基于Schema就是全部依靠配置文件.那么首先要了解Java注解. Java注解初探 在JDK5.0中,我们可以自定义标签,并通过Java语言的反射机制 ...

  4. CI整合Smarty

    1.到相应的站点下载smarty模板: 2.将源代码中的libs目录复制到项目的libraries目录下,改名为smarty3.0 3.在项目目录的libraries文件夹内新建文件ci_smarty ...

  5. Android 中pid与uid的作用与区别

    PID:为Process Identifier, PID就是各进程的身份标识. 程序一运行系统就会自动分配给进程一个独一无二的PID.进程中止后PID被系统回收,可能会被继续分配给新运行的程序,但是在 ...

  6. 台球游戏的核心算法和AI(2)

    前言: 最近研究了box2dweb, 觉得自己编写Html5版台球游戏的时机已然成熟. 这也算是圆自己的一个愿望, 一个梦想. 承接该序列的相关博文: • 台球游戏核心算法和AI(1) 同时结合htm ...

  7. Java多线程之ConcurrentSkipListMap深入分析(转)

    Java多线程之ConcurrentSkipListMap深入分析   一.前言 concurrentHashMap与ConcurrentSkipListMap性能测试 在4线程1.6万数据的条件下, ...

  8. bootstrap-7

    基础表单: 表单中常见的元素主要有:文本输入框.下拉选择框.单选按钮.复选按钮.文本框和按钮等. bootstrap并未对齐做太多的的定制化效果设计,仅仅对表单内的fieldset.legend.la ...

  9. apktool反编译apk文件

    1.首先下载apktool文件,可以从我的网盘下载:http://pan.baidu.com/s/1nvPdbVb 2.将你的apk文件和apktool文件放到一个文件夹下,这里就放到D:\study ...

  10. 【Gerrit】gerrit server搭建

    Part 1  Gerrit Prerequisites: 1.Java JDK>1.7 2.Git 3.SSH server 4.DB part 2 Set local gerrit serv ...