hdu 5442 (ACM-ICPC2015长春网络赛F题)
题意:给出一个字符串,长度是2*10^4。将它首尾相接形成环,并在环上找一个起始点顺时针或逆时针走一圈,求字典序最大的走法,如果有多个答案则找起始点最小的,若起始点也相同则选择顺时针。
分析:后缀数组。
首先,需要补充后缀数组的基本知识的话,看这个链接。
http://www.cnblogs.com/rainydays/archive/2011/05/09/2040993.html
我利用这道题重新整理了后缀数组的模板如下:
const int MAX_LEN = ;
//call init_RMQ(f[], n) first.
//then call query(a, b) to quest the RMQ of [a, b].
int power[];
int st[MAX_LEN * ][];
int ln[MAX_LEN * ]; //returns the index of the first minimum value in [x, y]
void init_RMQ(int f[], int n)
{
int i, j;
for (power[] = , i = ; i < ; i++)
{
power[i] = * power[i - ];
}
for (i = ; i < n; i++)
{
st[i][] = i;
}
ln[] = -;
for (int i = ; i <= n; i++)
{
ln[i] = ln[i >> ] + ;
}
for (j = ; j < ln[n]; j++)
{
for (i = ; i < n; i++)
{
if (i + power[j - ] - >= n)
{
break;
}
//for maximum, change ">" to "<"
//for the last, change "<" or ">" to "<=" or ">="
if (f[st[i][j - ]] > f[st[i + power[j - ]][j - ]])
{
st[i][j] = st[i + power[j - ]][j - ];
}
else
{
st[i][j] = st[i][j - ];
}
}
}
} int query(int f[], int x, int y)
{
if(x > y)
{
swap(x, y);
}
int k = ln[y - x + ];
//for maximum, change ">" to "<"
//for the last, change "<" or ">" to "<=" or ">="
if (f[st[x][k]] > f[st[y - power[k] + ][k]])
return st[y - power[k] + ][k];
return st[x][k];
} //first use the constructed function
//call function lcp(l, r) to get the longest common prefix of sa[l] and sa[r]
//have access to the member of sa, myrank, height and so on
//height is the LCP of sa[i] and sa[i + 1]
class SuffixArray
{
public:
char* s;
int n, sa[MAX_LEN], height[MAX_LEN], myrank[MAX_LEN];
int tmp[MAX_LEN], top[MAX_LEN]; SuffixArray()
{} //the string and the length of the string
SuffixArray(char* st, int len)
{
s = st;
n = len + ;
make_sa();
make_lcp();
} void make_sa()
{
// O(N * log N)
int na = (n < ? : n);
memset(top, , na * sizeof(int));
for (int i = ; i < n ; i++)
top[myrank[i] = s[i] & 0xff]++;
for (int i = ; i < na; i++)
top[i] += top[i - ];
for (int i = ; i < n ; i++)
sa[--top[ myrank[i]]] = i;
int x;
for (int len = ; len < n; len <<= )
{
for (int i = ; i < n; i++)
{
x = sa[i] - len;
if (x < )
x += n;
tmp[top[myrank[x]]++] = x;
}
sa[tmp[top[] = ]] = x = ;
for (int i = ; i < n; i++)
{
if (myrank[tmp[i]] != myrank[tmp[i-]] ||
myrank[tmp[i]+len]!=myrank[tmp[i-]+len])
top[++x] = i;
sa[tmp[i]] = x;
}
memcpy(myrank, sa , n * sizeof(int));
memcpy(sa , tmp, n * sizeof(int));
if (x >= n - )
break;
}
} void make_lcp()
{
// O(4 * N)
int i, j, k;
for (j = myrank[height[i = k = ] = ]; i < n - ; i++, k++)
{
while (k >= && s[i] != s[sa[j - ] + k])
{
height[j - ] = (k--);
j = myrank[sa[j] + ];
}
}
init_RMQ(height, n - );
} int lcp(int l, int r)
{
return height[query(height, l, r - )];
}
};
先将两个原字符串拼成一个长度是2倍的字符串,便于处理越过原串末尾的情况。
运行后缀数组求顺时针解。
反转这个长字符串,再运行后缀数组,求逆时针解。
比较两个解,得出最终解。
下面我们来分析一下,每次运行后缀数组之后是如何求解的。
设原串长度为len。
首先从sa[len*2]开始依次向前找。即从排序最大的开始向前找。之所以排序最大的不一定是我们要的答案是因为:
1.它可能起始点在后面的附加的串上,并没有构成完整的一圈。
2.我们还要找起始点最小的答案呢。(当然,对于反转后的字符串,我们要找起始点最大的)
在第一次遇到一个起始点小于len的时候,表明这个可能就是答案。但是前面可能有起始点更小的,我们还要继续沿着sa向前找,但找的时候一定要保证字典序是最大的,所以每次向前移动一个,都要观察height(i, i+1)是否>len,如果不是,则说明字典序已经不是最大了。
特别注意,height==len的情况也是不可以的,因为两者相等很有可能表明其中一个的起始点已经等于len。当然也可以对每个都判断一下起始点位置。
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std; #define d(x) const int MAX_N = (int)(4e4) + ; //call init_RMQ(f[], n) first.
//then call query(a, b) to quest the RMQ of [a, b].
int power[];
int st[MAX_N * ][];
int ln[MAX_N * ]; //returns the index of the first minimum value in [x, y]
void init_RMQ(int f[], int n)
{
int i, j;
for (power[] = , i = ; i < ; i++)
{
power[i] = * power[i - ];
}
for (i = ; i < n; i++)
{
st[i][] = i;
}
ln[] = -;
for (int i = ; i <= n; i++)
{
ln[i] = ln[i >> ] + ;
}
for (j = ; j < ln[n]; j++)
{
for (i = ; i < n; i++)
{
if (i + power[j - ] - >= n)
{
break;
}
//for maximum, change ">" to "<"
//for the last, change "<" or ">" to "<=" or ">="
if (f[st[i][j - ]] > f[st[i + power[j - ]][j - ]])
{
st[i][j] = st[i + power[j - ]][j - ];
}
else
{
st[i][j] = st[i][j - ];
}
}
}
} int query(int f[], int x, int y)
{
if(x > y)
{
swap(x, y);
}
int k = ln[y - x + ];
//for maximum, change ">" to "<"
//for the last, change "<" or ">" to "<=" or ">="
if (f[st[x][k]] > f[st[y - power[k] + ][k]])
return st[y - power[k] + ][k];
return st[x][k];
} //first use the constructed function
//call function lcp(l, r) to get the longest common prefix of sa[l] and sa[r]
//have access to the member of sa, myrank, height and so on
//height is the LCP of sa[i] and sa[i + 1]
class SuffixArray
{
public:
char* s;
int n, sa[MAX_N], height[MAX_N], myrank[MAX_N];
int tmp[MAX_N], top[MAX_N]; SuffixArray()
{} //the string and the length of the string
SuffixArray(char* st, int len)
{
s = st;
n = len + ;
make_sa();
make_lcp();
} void make_sa()
{
// O(N * log N)
int na = (n < ? : n);
memset(top, , na * sizeof(int));
for (int i = ; i < n ; i++)
top[myrank[i] = s[i] & 0xff]++;
for (int i = ; i < na; i++)
top[i] += top[i - ];
for (int i = ; i < n ; i++)
sa[--top[ myrank[i]]] = i;
int x;
for (int len = ; len < n; len <<= )
{
for (int i = ; i < n; i++)
{
x = sa[i] - len;
if (x < )
x += n;
tmp[top[myrank[x]]++] = x;
}
sa[tmp[top[] = ]] = x = ;
for (int i = ; i < n; i++)
{
if (myrank[tmp[i]] != myrank[tmp[i-]] ||
myrank[tmp[i]+len]!=myrank[tmp[i-]+len])
top[++x] = i;
sa[tmp[i]] = x;
}
memcpy(myrank, sa , n * sizeof(int));
memcpy(sa , tmp, n * sizeof(int));
if (x >= n - )
break;
}
} void make_lcp()
{
// O(4 * N)
int i, j, k;
for (j = myrank[height[i = k = ] = ]; i < n - ; i++, k++)
{
while (k >= && s[i] != s[sa[j - ] + k])
{
height[j - ] = (k--);
j = myrank[sa[j] + ];
}
}
init_RMQ(height, n - );
} int lcp(int l, int r)
{
return height[query(height, l, r - )];
}
}; SuffixArray suffix;
int len;
char ans1[MAX_N], ans2[MAX_N];
int pos1, pos2;
char s[MAX_N]; int work1(char* ans)
{
int p = len * ;
while (suffix.sa[p] >= len)
p--;
for (int i = p - ; i >= ; i--)
{
if (suffix.lcp(i, i + ) <= len)
break;
if (suffix.sa[i] < suffix.sa[p])
{
p = i;
}
}
memcpy(ans, s + suffix.sa[p], len);
ans[len] = ;
return suffix.sa[p];
} int work2(char* ans)
{
int p = len * ;
while (suffix.sa[p] >= len)
p--;
for (int i = p - ; i >= ; i--)
{
if (suffix.lcp(i, i + ) <= len)
break;
if (suffix.sa[i] > suffix.sa[p])
{
p = i;
}
}
memcpy(ans, s + suffix.sa[p], len);
ans[len] = ;
return suffix.sa[p];
} int main()
{
int t;
scanf("%d", &t);
while (t--)
{
scanf("%d", &len);
scanf("%s", s);
for (int i = ; i < len; i++)
{
s[len + i] = s[i];
}
suffix = SuffixArray(s, len * );
pos1 = work1(ans1);
reverse(s, s + len * );
suffix = SuffixArray(s, len * );
pos2 = work2(ans2);
pos2 = len - - pos2; if (strcmp(ans1, ans2) > )
{
printf("%d 0\n", pos1 + );
continue;
}else if (strcmp(ans1, ans2) < )
{
printf("%d 1\n", pos2 + );
continue;
}else if (pos1 <= pos2)
{
printf("%d 0\n", pos1 + );
continue;
}else
{
printf("%d 1\n", pos2 + );
}
}
return ;
}
hdu 5442 (ACM-ICPC2015长春网络赛F题)的更多相关文章
- 2013 ACM/ICPC 长春网络赛F题
题意:两个人轮流说数字,第一个人可以说区间[1~k]中的一个,之后每次每人都可以说一个比前一个人所说数字大一点的数字,相邻两次数字只差在区间[1~k].谁先>=N,谁输.问最后是第一个人赢还是第 ...
- hdu 5441 (2015长春网络赛E题 带权并查集 )
n个结点,m条边,权值是 从u到v所花的时间 ,每次询问会给一个时间,权值比 询问值小的边就可以走 从u到v 和从v到u算不同的两次 输出有多少种不同的走法(大概是这个意思吧)先把边的权值 从小到大排 ...
- 2013 ACM/ICPC 长春网络赛E题
题意:给出一个字符串,要从头.尾和中间找出三个完全相等的子串,这些串覆盖的区间互相不能有重叠部分.头.尾的串即为整个字符串的前缀和后缀.问这个相同的子串的最大长度是多少. 分析:利用KMP算法中的ne ...
- 2013 ACM/ICPC 南京网络赛F题
题意:给出一个4×4的点阵,连接相邻点可以构成一个九宫格,每个小格边长为1.从没有边的点阵开始,两人轮流向点阵中加边,如果加入的边构成了新的边长为1的小正方形,则加边的人得分.构成几个得几分,最终完成 ...
- ACM-ICPC 2019南昌网络赛F题 Megumi With String
ACM-ICPC 南昌网络赛F题 Megumi With String 题目描述 给一个长度为\(l\)的字符串\(S\),和关于\(x\)的\(k\)次多项式\(G[x]\).当一个字符串\(str ...
- HDU 4764 Stone (2013长春网络赛,水博弈)
Stone Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submi ...
- HDU 4762 Cut the Cake (2013长春网络赛1004题,公式题)
Cut the Cake Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Tota ...
- HDU 4759 Poker Shuffle(2013长春网络赛1001题)
Poker Shuffle Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Tot ...
- HDU 4768 Flyer (2013长春网络赛1010题,二分)
Flyer Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submi ...
随机推荐
- sql语句积累
有一个需求表(demand),每一记录就是一条需求:另外有一个报价表(quotation),每一条记录是对需求记录的报价详情. 需求表: 报价表: 我现在想得到每条需求的信息以及有多少人报价了,我们可 ...
- Python之路【目录】 2
http://www.cnblogs.com/wupeiqi/articles/4938499.html
- uname是什么?
uname= unix +name, 是指unix 这个操作系统的 名字, 包括 主机名, 内核版本 架构 平台名称等等
- acpi和btrfs-安装opensuse时的选项
g-------------------- 关于GPL和LGPL和QPL等 读书笔记:采用LGPL的代码,一般情况下它本身就是一个第三方库(别忘了LGPL最早的名字就是Library GPL),这时候 ...
- Java基础相关总结
临近面试,权当复习了吧 final相关 定义常量的方法 eg:final int i=0;//则i不能被修改 final修饰的类不能被继承,因此没有子类,且它的类中的方法默认是final final ...
- 高效率http页面优化法则一【JS对DOM的操作】
高效http页面优化法则一很多人都认为JS的效率太慢了,都不愿意用js来实现相对困难一点的程序逻辑.在这里我要说的是其实js的效率并不慢,慢的是DOM,如果操作好DOM,你的js效率将提高接近千倍(这 ...
- javascript数组的知识点讲解
javascript数组的知识点讲解 阅读目录 数组的基本方法如下 concat() join() pop() push() reverse() shift() sort() splice() toS ...
- Spring注入方式
- UML浅析
UML概述 UML (Unified Modeling Language)为面向对象软件设计提供统一的.标准的.可视化的建模语言.适用于描述以用例为驱动,以体系结构为中心的软件设计的全过程. UML模 ...
- eclipse插件安装失败的列表如何清除-一个困扰很久的问题
平时在安装eclipse插件的时候由于网络不稳定或者下载下来的包不兼容等原因安装失败的情况很多, 但是当插件安装一次以后,就会在安装的url中留下历史记录,并且每次切换到安装插件的界面中时,后台都要检 ...