IR的评价指标-MAP,NDCG和MRR

 

MAP(Mean Average Precision):

单个主题的平均准确率是每篇相关文档检索出后的准确率的平均值。主集合的平均准确率(MAP)是每个主题的平均准确率的平均值。MAP 是反映系统在全部相关文档上性能的单值指标。系统检索出来的相关文档越靠前(rank 越高),MAP就可能越高。如果系统没有返回相关文档,则准确率默认为0。
例如:假设有两个主题,主题1有4个相关网页,主题2有5个相关网页。某系统对于主题1检索出4个相关网页,其rank分别为1, 2, 4, 7;对于主题2检索出3个相关网页,其rank分别为1,3,5。对于主题1,平均准确率为(1/1+2/2+3/4+4/7)/4=0.83。对于主题2,平均准确率为(1/1+2/3+3/5+0+0)/5=0.45。则MAP= (0.83+0.45)/2=0.64。”

NDCG(Normalized Discounted Cumulative Gain):

计算相对复杂。对于排在结位置n处的NDCG的计算公式如下图所示:

在MAP中,四个文档和query要么相关,要么不相关,也就是相关度非0即1。NDCG中改进了下,相关度分成从0到r的r+1的等级(r可设定)。当取r=5时,等级设定如下图所示:

(应该还有r=1那一级,原文档有误,不过这里不影响理解)

例如现在有一个query={abc},返回下图左列的Ranked List(URL),当假设用户的选择与排序结果无关(即每一级都等概率被选中),则生成的累计增益值如下图最右列所示:

考虑到一般情况下用户会优先点选排在前面的搜索结果,所以应该引入一个折算因子(discounting factor): log(2)/log(1+rank)。这时将获得DCG值(Discounted Cumulative Gain)如下如所示:

最后,为了使不同等级上的搜索结果的得分值容易比较,需要将DCG值归一化的到NDCG值。操作如下图所示,首先计算理想返回结果List的DCG值:

然后用DCG/MaxDCG就得到NDCG值,如下图所示:

MRR(Mean Reciprocal Rank):

是把标准答案在被评价系统给出结果中的排序取倒数作为它的准确度,再对所有的问题取平均。相对简单,举个例子:有3个query如下图所示:

(黑体为返回结果中最匹配的一项)

可计算这个系统的MRR值为:(1/3 + 1/2 + 1)/3 = 11/18=0.61。

IR的评价指标-MAP,NDCG和MRR的更多相关文章

  1. (转)Learning to Rank for IR的评价指标—MAP,NDCG,MRR

    转自:http://www.cnblogs.com/eyeszjwang/articles/2368087.html MAP(Mean Average Precision):单个主题的平均准确率是每篇 ...

  2. IR的评价指标—MAP,NDCG,MRR

    http://www.cnblogs.com/eyeszjwang/articles/2368087.html MAP(Mean Average Precision):单个主题的平均准确率是每篇相关文 ...

  3. Learning to Rank for IR的评价指标—MAP,NDCG,MRR

    转自: https://www.cnblogs.com/eyeszjwang/articles/2368087.html MAP(Mean Average Precision):单个主题的平均准确率是 ...

  4. IR的评价指标之MRR

    MRR(Mean Reciprocal Rank): 是一个国际上通用的对搜索算法进行评价的机制,即第一个结果匹配,分数为1,第二个匹配分数为0.5,第n个匹配分数为1/n,如果没有匹配的句子分数为0 ...

  5. 目标检测评价指标(mAP)

    常见指标 precision 预测出的所有目标中正确的比例 (true positives / true positives + false positives). recall 被正确定位识别的目标 ...

  6. 目标检测评价指标mAP 精准率和召回率

    首先明确几个概念,精确率,召回率,准确率 精确率precision 召回率recall 准确率accuracy 以一个实际例子入手,假设我们有100个肿瘤病人. 95个良性肿瘤病人,5个恶性肿瘤病人. ...

  7. 推荐系统排序(Ranking)评价指标

      一.准确率(Precision)和召回率(Recall)  (令R(u)是根据用户在训练集上的行为给用户作出的推荐列表,而T(u)是用户在测试集上的行为列表.) 对用户u推荐N个物品(记为R(u) ...

  8. Datasets and Evaluation Metrics used in Recommendation System

    Movielens and Netflix remain the most-used datasets. Other datasets such as Amazon, Yelp and CiteUli ...

  9. Learning To Rank之LambdaMART前世今生

    1.       前言 我们知道排序在非常多应用场景中属于一个非常核心的模块.最直接的应用就是搜索引擎.当用户提交一个query.搜索引擎会召回非常多文档,然后依据文档与query以及用户的相关程度对 ...

随机推荐

  1. Windows10 利用 Docker 配置 TensofFlow 深度学习工具

    TensorFlow 这个不用多介绍了吧,大家都知道,Google的开源深度学习软件库,官网点这里:https://www.tensorflow.org/ 当然这个工具官方支持装在 Ubuntu 和 ...

  2. android java substring说明

    substring(参数)是java中截取字符串的一个方法有两种传参方式一种是public String substring(int beginIndex)返回一个新的字符串,它是此字符串的一个子字符 ...

  3. C# 格式化小总结

    C#中几个常用的格式化标识符 C或c Currency 货币格式 D或d Decimal 十进制格式(十进制整数,不要和.Net的Decimal数据类型混淆了) E或e Exponent 指数格式 F ...

  4. zookeeper Eclipse 开发环境搭建及简单示例

    一,下载Zookeeper安装包 从官方网站下载稳定版安装包后,解压. 其中ZK_HOME 为:D:\Program Files\zookeeper-3.4.9 二,启动Zookeeper Serve ...

  5. AC日记——字符替换 openjudge 1.7 08

    08:字符替换 总时间限制:  1000ms 内存限制:  65536kB 描述 把一个字符串中特定的字符全部用给定的字符替换,得到一个新的字符串. 输入 只有一行,由一个字符串和两个字符组成,中间用 ...

  6. Unity C# 反编译

    前言 结合前篇:[反编译U3D]Decompile Unity Resources 修正 本篇说说如何查看unity项目(apk) 的源代码,前提是这个apk的代码未经过加密. 写这篇的目地就是看看别 ...

  7. red5安装时候出现服务不能启动异常

    Exception java.lang.ClassCastException: org.slf4j.helpers.BasicMDCAdapter cannot be cast to ch.qos.l ...

  8. 代码覆盖率工具 EMMA

    使用 EMMA 获得功能测试覆盖率 测试覆盖率是评价测试完整性的重要的度量标准之一. EMMA 是一个面向 Java 代码的测试覆盖率收集工具.在测试过程中,使用 EMMA 能使收集和报告测试覆盖率的 ...

  9. Github 安全类Repo收集整理

    作者:天谕链接:https://zhuanlan.zhihu.com/p/21380662来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处.刚好这两天对之前github上关 ...

  10. django复习笔记3:urls/views/templates三板斧

    0.先看看文件结构 mysite/ mysite/ ├── __pycache__ │   └── manage.cpython-.pyc ├── blog │   ├── __init__.py │ ...